scholarly journals p19ARFDetermines the Balance between Normal Cell Proliferation Rate and Apoptosis during Mammary Gland Development

2004 ◽  
Vol 15 (5) ◽  
pp. 2302-2311 ◽  
Author(s):  
Yijun Yi ◽  
Anne Shepard ◽  
Frances Kittrell ◽  
Biserka Mulac-Jericevic ◽  
Daniel Medina ◽  
...  

This study demonstrated, for the first time, the following events related to p19ARFinvolvement in mammary gland development: 1) Progesterone appears to regulate p19ARFin normal mammary gland during pregnancy. 2) p19ARFexpression levels increased sixfold during pregnancy, and the protein level plateaus during lactation. 3) During involution, p19ARFprotein level remained at high levels at 2 and 8 days of involution and then, declined sharply at day 15. Absence of p19ARFin mammary epithelial cells leads to two major changes, 1) a delay in the early phase of involution concomitant with downregulation of p21Cip1and decrease in apoptosis, and 2) p19ARFnull cells are immortal in vivo measured by serial transplantion, which is partly attributed to complete absence of p21Cip1compared with WT cells. Although, p19ARFis dispensable in mammary alveologenesis, as evidenced by normal differentiation in the mammary gland of pregnant p19ARFnull mice, the upregulation of p19ARFby progesterone in the WT cells and the weakness of p21Cip1in mammary epithelial cells lacking p19ARFstrongly suggest that the functional role(s) of p19ARFin mammary gland development is critical to sustain normal cell proliferation rate during pregnancy and normal apoptosis in involution possibly through the p53-dependent pathway.

Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2876-2885 ◽  
Author(s):  
Sarah J. Santos ◽  
Sandra Z. Haslam ◽  
Susan E. Conrad

Signal transducer and activator of transcription (Stat)5a is a critical regulator of mammary gland development. Previous studies have focused on Stat5a’s role in the late pregnant and lactating gland, and although active Stat5a is detectable in mammary epithelial cells in virgin mice, little is known about its role during early mammary gland development. In this report, we compare mammary gland morphology in pubertal and adult nulliparous wild-type and Stat5a−/− mice. The Stat5a-null mammary glands exhibited defects in secondary and side branching, providing evidence that Stat5a regulates these processes. In addition, Stat5a−/− mammary glands displayed an attenuated proliferative response to pregnancy levels of estrogen plus progesterone (E+P), suggesting that it plays an important role in early pregnancy. Finally, we examined one potential mediator of Stat5a’s effects, receptor activator of nuclear factor-κB ligand (RANKL). Stat5a−/− mammary glands were defective in inducing RANKL in response to E+P treatment. In addition, regulation of several reported RANKL targets, including inhibitor of DNA binding 2 (Id2), cyclin D1, and the cyclin-dependent kinase inhibitor p21Waf1/Cip1, was altered in Stat5a−/− mammary cells, suggesting that one or more of these proteins mediate the effects of Stat5a in E+P-treated mammary epithelial cells.


Oncogene ◽  
2003 ◽  
Vol 23 (8) ◽  
pp. 1507-1513 ◽  
Author(s):  
Ning Wang ◽  
Elena Kudryavtseva ◽  
Irene L Ch'en ◽  
Joshua McCormick ◽  
Tod M Sugihara ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 671
Author(s):  
Yue Zhang ◽  
Qiong Wu ◽  
Jidan Liu ◽  
Xiaopeng An ◽  
Binyun Cao

MicroRNAs play an essential role in mammary gland development, and involution is a factor that limits lactation. Chi-miR-8516 is one of the validated microRNAs that regulates the expression of STC1 and MMP1, which surge during the involution of the mammary gland. This study aims to explore the direct or indirect regulation of STC1 and MMP1 by chi-miR-8516 and the regulation of chi-miR-8516 by circ-140. In goat mammary epithelial cells, we found that chi-miR-8516 takes circ-140 as a sponge and regulates MMP1 expression by targeting STC1 and promoting the phosphorylation of MAPK. The examination of αs1-/β-casein and lipid showed the modulation of the circ-140/chi-miR-8516/STC1-MMP1 axis in casein secretion and lipid formation, which was regulated by the phosphorylation of mTOR and STAT5. This study illustrates an axis that regulates the synthesis of milk components, and explores the pathways in which the axis participates.


2003 ◽  
Vol 161 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Rui-An Wang ◽  
Ratna K. Vadlamudi ◽  
Rozita Bagheri-Yarmand ◽  
Iwan Beuvink ◽  
Nancy E. Hynes ◽  
...  

Although growth factors have been shown to influence mammary gland development, the nature of downstream effectors remains elusive. In this study, we show that the expression of p21-activated kinase (Pak)1, a serine/threonine protein kinase, is activated in mammary glands during pregnancy and lactation. By targeting an ectopic expression of a kinase-dead Pak1 mutant under the control of ovine β-lactoglobulin promoter, we found that the mammary glands of female mice expressing kinase-dead Pak1 transgene revealed incomplete lobuloalveolar development and impaired functional differentiation. The expression of whey acidic protein and β-casein and the amount of activated Stat5 in the nuclei of epithelial cells in transgenic mice were drastically reduced. Further analysis of the underlying mechanisms revealed that Pak1 stimulated β-casein promoter activity in normal mouse mammary epithelial cells and also cooperated with Stat5a. Pak1 directly interacted with and phosphorylated Stat5a at Ser 779, and both COOH-terminal deletion containing Ser 779 of Stat5a and the Ser 779 to Ala mutation completely prevented the ability of Pak1 to stimulate β-casein promoter. Mammary glands expressing inactive Pak1 exhibited a reduction of Stat5a Ser 779 phosphorylation. These findings suggest that Pak1 is required for alveolar morphogenesis and lactation function, and thus, identify novel functions of Pak1 in the mammary gland development.


Development ◽  
2002 ◽  
Vol 129 (12) ◽  
pp. 2997-3008
Author(s):  
Lisa M. Minter ◽  
Ellen S. Dickinson ◽  
Stephen P. Naber ◽  
D. Joseph Jerry

The tumor suppressor gene, TP53, plays a major role in surveillance and repair of radiation-induced DNA damage. In multiple cell types, including mammary epithelial cells, abrogation of p53 (encoded by Trp53) function is associated with increased tumorigenesis. We examined γ-irradiated BALB/c-Trp53+/+ and -Trp53–/– female mice at five stages of post-natal mammary gland development to determine whether radiation-induced p53 activity is developmentally regulated. Our results show that p53-mediated responses are attenuated in glands from irradiated virgin and lactating mice, as measured by induction of p21/WAF1 (encoded by Cdkn1a) and apoptosis, while irradiated early- and mid-pregnancy glands exhibit robust p53 activity. There is a strong correlation between p53-mediated apoptosis and the degree of cellular proliferation, independent of the level of differentiation. In vivo, proliferation is intimately influenced by steroid hormones. To determine whether steroid hormones directly modulate p53 activity, whole organ cultures of mammary glands were induced to proliferate using estrogen plus progesterone or epidermal growth factor plus transforming growth factor-α and p53 responses to γ-irradiation were measured. Regardless of mitogens used, proliferating mammary epithelial cells show comparable p53 responses to γ-irradiation, including expression of nuclear p53 and p21/WAF1 and increased levels of apoptosis, compared to non-proliferating irradiated control cultures. Our study suggests that differences in radiation-induced p53 activity during post-natal mammary gland development are influenced by the proliferative state of the gland, and may be mediated indirectly by the mitogenic actions of steroid hormones in vivo.


Author(s):  
Manoj Kumar Jena ◽  
Ashok Kumar Mohanty

  Mammary gland is a unique organ with its function of milk synthesis, secretion, and involution to prepare the gland for subsequent lactation. The mammary epithelial cells proliferate, differentiate, undergo apoptosis, and tissue remodeling following a cyclic pathway in lactation – involution – lactation cycle, thus fine tuning the molecular events through hormones, and regulatory molecules. Several studies are performed on the mammary gland development, lactogenesis, and involution process in molecular details. The developmental stages of mammary gland are embryonic, pre-pubertal, pubertal, pregnancy, lactation, and involution. Major developmental processes occur after puberty with hormones and growth factors playing crucial role. The two major pathways such as Janus kinases-signal transducer and activator of transcription pathway and PI3K-Akt pathway play a major role in maintaining the lactation. The involution process is a well-orchestrated event involving several signaling molecules and making the gland ready for subsequent lactation. The review focuses on findings with molecular details of different stages of the mammary gland development and signaling pathways involved in lactation–involution cycle. Deep insight into the developmental stages of mammary gland will pave the way to understand mammary gland biology, apoptosis, oncogenesis, and it will help the researchers to use mammary gland as a model for research on various aspects.  


2013 ◽  
Vol 45 (4) ◽  
pp. 151-161 ◽  
Author(s):  
Laurent Galio ◽  
Stéphanie Droineau ◽  
Patrick Yeboah ◽  
Hania Boudiaf ◽  
Stephan Bouet ◽  
...  

The mammary gland undergoes extensive remodeling between the beginning of pregnancy and lactation; this involves cellular processes including cell proliferation, differentiation, and apoptosis, all of which are under the control of numerous regulators. To unravel the role played by miRNA, we describe here 47 new ovine miRNA cloned from mammary gland in early pregnancy displaying strong similarities with those already identified in the cow, human, or mouse. A microarray study of miRNA variations in the adult ovine mammary gland during pregnancy and lactation showed that 100 miRNA are regulated according to three principal patterns of expression: a decrease in early pregnancy, a peak at midpregnancy, or an increase throughout late pregnancy and lactation. One miRNA displaying each pattern (miR-21, miR-205, and miR-200b) was analyzed by qRT-PCR. Variations in expression were confirmed for all three miRNA. Using in situ hybridization, we detected both miR-21 and miR-200 in luminal mammary epithelial cells when expressed, whereas miR-205 was expressed in basal cells during the first half of pregnancy and then in luminal cells during the second half. We therefore conclude that miR-21 is strongly expressed in the luminal cells of the normal mammary gland during early pregnancy when extensive cell proliferation occurs. In addition, we show that miR-205 and miR-200 are coexpressed in luminal cells, but only during the second half of pregnancy. These two miRNA may cooperate to maintain epithelial status by repressing an EMT-like program, to achieve and preserve the secretory phenotype of mammary epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document