scholarly journals A Small C-Terminal Sequence of Aurora B Is Responsible for Localization and Function

2005 ◽  
Vol 16 (1) ◽  
pp. 292-305 ◽  
Author(s):  
Laetitia Scrittori ◽  
Dimitrios A. Skoufias ◽  
Fabienne Hans ◽  
Véronique Gerson ◽  
Paolo Sassone-Corsi ◽  
...  

Aurora B, a protein kinase required in mitosis, localizes to inner centromeres at metaphase and the spindle midzone in anaphase and is required for proper chromosome segregation and cytokinesis. Aurora A, a paralogue of Aurora B, localizes instead to centrosomes and spindle microtubules. Except for distinct N termini, Aurora B and Aurora A have highly similar sequences. We have combined small interfering RNA (siRNA) ablation of Aurora B with overexpression of truncation mutants to investigate the role of Aurora B sequence in its function. Reintroduction of Aurora B during siRNA treatment restored its localization and function. This permitted a restoration of function test to determine the sequence requirements for Aurora B targeting and function. Using this rescue protocol, neither N-terminal truncation of Aurora B unique sequence nor substitution with Aurora A N-terminal sequence affected Aurora B localization or function. Truncation of unique Aurora B C-terminal sequence from terminal residue 344 to residue 333 was without effect, but truncation to 326 abolished localization and function. Deletion of residues 326-333 completely abolished localization and blocked cells at prometaphase, establishing this sequence as critical to Aurora B function. Our findings thus establish a small sequence as essential for the distinct localization and function of Aurora B.

2007 ◽  
Vol 177 (6) ◽  
pp. 981-993 ◽  
Author(s):  
Anton Khmelinskii ◽  
Clare Lawrence ◽  
Johanna Roostalu ◽  
Elmar Schiebel

Spindle elongation in anaphase of mitosis is a cell cycle–regulated process that requires coordination between polymerization, cross-linking, and sliding of microtubules (MTs). Proteins that assemble at the spindle midzone may be important for this process. In this study, we show that Ase1 and the separase–Slk19 complex drive midzone assembly in yeast. Whereas the conserved MT-bundling protein Ase1 establishes a midzone, separase–Slk19 is required to focus and center midzone components. An important step leading to spindle midzone assembly is the dephosphorylation of Ase1 by the protein phosphatase Cdc14 at the beginning of anaphase. Failure to dephosphorylate Ase1 delocalizes midzone proteins and delays the second, slower phase of anaphase B. In contrast, in cells expressing nonphosphorylated Ase1, anaphase spindle extension is faster, and spindles frequently break. Cdc14 also controls the separase–Slk19 complex indirectly via the Aurora B kinase. Thus, Cdc14 regulates spindle midzone assembly and function directly through Ase1 and indirectly via the separase–Slk19 complex.


2009 ◽  
Vol 106 (17) ◽  
pp. 6939-6944 ◽  
Author(s):  
Jingyan Fu ◽  
Minglei Bian ◽  
Junjun Liu ◽  
Qing Jiang ◽  
Chuanmao Zhang

Aurora kinase-A and -B are key regulators of the cell cycle and tumorigenesis. It has remained a mystery why these 2 Aurora kinases, although highly similar in protein sequence and structure, are distinct in subcellular localization and function. Here, we report the striking finding that a single amino acid residue is responsible for these differences. We replaced the Gly-198 of Aurora-A with the equivalent residue Asn-142 of Aurora-B and found that in HeLa cells, Aurora-AG198N was recruited to the inner centromere in metaphase and the midzone in anaphase, reminiscent of the Aurora-B localization. Moreover, Aurora-AG198N compensated for the loss of Aurora-B in chromosome misalignment and cell premature exit from mitosis. Furthermore, Aurora-AG198N formed a complex with the Aurora-B partners, INCENP and Survivin, and its localization depended on this interaction. Aurora-AG198N phosphorylated the Aurora-B substrates INCENP and Survivin in vitro. Therefore, we propose that the presence of Gly or Asn at a single site assigns Aurora-A and -B to their respective partners and thus to their distinctive subcellular localizations and functions.


1996 ◽  
Vol 109 (3) ◽  
pp. 561-567 ◽  
Author(s):  
F.J. McNally ◽  
K. Okawa ◽  
A. Iwamatsu ◽  
R.D. Vale

The assembly and function of the mitotic spindle involve specific changes in the dynamic properties of microtubules. One such change results in the poleward flux of tubulin in which spindle microtubules polymerize at their kinetochore-attached plus ends while they shorten at their centrosome-attached minus ends. Since free microtubule minus ends do not depolymerize in vivo, the poleward flux of tubulin suggests that spindle microtubules are actively disassembled at or near their centrosomal attachment points. The microtubule-severing ATPase, katanin, has the ability actively to sever and disassemble microtubules and is thus a candidate for the role of a protein mediating the poleward flux of tubulin. Here we determine the subcellular localization of katanin by immunofluorescence as a preliminary step in determining whether katanin mediates the poleward flux of tubulin. We find that katanin is highly concentrated at centrosomes throughout the cell cycle. Katanin's localization is different from that of gamma-tubulin in that microtubules are required to maintain the centrosomal localization of katanin. Direct comparison of the localization of katanin and gamma-tubulin reveals that katanin is localized in a region surrounding the gamma-tubulin-containing pericentriolar region in detergent-extracted mitotic spindles. The centrosomal localization of katanin is consistent with the hypothesis that katanin mediates the disassembly of microtubule minus ends during poleward flux.


2008 ◽  
Vol 181 (4) ◽  
pp. 595-603 ◽  
Author(s):  
Thomas M. Durcan ◽  
Elizabeth S. Halpin ◽  
Trisha Rao ◽  
Nicholas S. Collins ◽  
Emily K. Tribble ◽  
...  

During anaphase, the nonkinetochore microtubules in the spindle midzone become compacted into the central spindle, a structure which is required to both initiate and complete cytokinesis. We show that Tektin 2 (Tek2) associates with the spindle poles throughout mitosis, organizes the spindle midzone microtubules during anaphase, and assembles into the midbody matrix surrounding the compacted midzone microtubules during cytokinesis. Tek2 small interfering RNA (siRNA) disrupts central spindle organization and proper localization of MKLP1, PRC1, and Aurora B to the midzone and prevents the formation of a midbody matrix. Video microscopy revealed that loss of Tek2 results in binucleate cell formation by aberrant fusion of daughter cells after cytokinesis. Although a myosin II inhibitor, blebbistatin, prevents actin-myosin contractility, the microtubules of the central spindle are compacted. Strikingly, Tek2 siRNA abolishes this actin-myosin–independent midzone microtubule compaction. Thus, Tek2-dependent organization of the central spindle during anaphase is essential for proper midbody formation and the segregation of daughter cells after cytokinesis.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Federica Basilico ◽  
Stefano Maffini ◽  
John R Weir ◽  
Daniel Prumbaum ◽  
Ana M Rojas ◽  
...  

Kinetochores, multi-subunit complexes that assemble at the interface with centromeres, bind spindle microtubules to ensure faithful delivery of chromosomes during cell division. The configuration and function of the kinetochore–centromere interface is poorly understood. We report that a protein at this interface, CENP-M, is structurally and evolutionarily related to small GTPases but is incapable of GTP-binding and conformational switching. We show that CENP-M is crucially required for the assembly and stability of a tetramer also comprising CENP-I, CENP-H, and CENP-K, the HIKM complex, which we extensively characterize through a combination of structural, biochemical, and cell biological approaches. A point mutant affecting the CENP-M/CENP-I interaction hampers kinetochore assembly and chromosome alignment and prevents kinetochore recruitment of the CENP-T/W complex, questioning a role of CENP-T/W as founder of an independent axis of kinetochore assembly. Our studies identify a single pathway having CENP-C as founder, and CENP-H/I/K/M and CENP-T/W as CENP-C-dependent followers.


2013 ◽  
Vol 81 (9) ◽  
pp. 3326-3337 ◽  
Author(s):  
Emily J. Kabeiseman ◽  
Kyle Cichos ◽  
Ted Hackstadt ◽  
Andrea Lucas ◽  
Elizabeth R. Moore

ABSTRACTThe predominant players in membrane fusion events are thesolubleN-ethylmaleimide-sensitive factorattachment proteinreceptor (SNARE) family of proteins. We hypothesize that SNARE proteins mediate fusion events at the chlamydial inclusion and are important for chlamydial lipid acquisition. We have previously demonstrated thattrans-Golgi SNARE syntaxin 6 localizes to the chlamydial inclusion. To investigate the role of syntaxin 6 at the chlamydial inclusion, we examined the localization and function of anothertrans-Golgi SNARE and syntaxin 6-binding partner, vesicle-associated membrane protein 4 (VAMP4), at the chlamydial inclusion. In this study, we demonstrate that syntaxin 6 and VAMP4 colocalize to the chlamydial inclusion and interact at the chlamydial inclusion. Furthermore, in the absence of VAMP4, syntaxin 6 is not retained at the chlamydial inclusion. Small interfering RNA (siRNA) knockdown of VAMP4 inhibited chlamydial sphingomyelin acquisition, correlating with a log decrease in infectious progeny. VAMP4 retention at the inclusion was shown to be dependent onde novochlamydial protein synthesis, but unlike syntaxin 6, VAMP4 recruitment is observed in a species-dependent manner. Notably, VAMP4 knockdown inhibits sphingomyelin trafficking only to inclusions in which it localizes. These data support the hypothesis that VAMP proteins play a central role in mediating eukaryotic vesicular interactions at the chlamydial inclusion and, thus, support chlamydial lipid acquisition and chlamydial development.


2004 ◽  
Vol 15 (1) ◽  
pp. 256-267 ◽  
Author(s):  
Günther Schlunck ◽  
Hanna Damke ◽  
William B. Kiosses ◽  
Nicole Rusk ◽  
Marc H. Symons ◽  
...  

The GTPase dynamin controls a variety of endocytic pathways, participates in the formation of phagosomes, podosomal adhesions, and invadopodia, and in regulation of the cytoskeleton and apoptosis. Rac, a member of the Rho family of small GTPases, controls formation of lamellipodia and focal complexes, which are critical in cell migration and phagocytosis. We now show that disruption of dynamin-2 function alters Rac localization and inhibits cell spreading and lamellipodia formation even though Rac is activated. Dominant-negative K44A dynamin-2 inhibited cell spreading and lamellipodia formation on fibronectin without blocking cell adhesion; dynamin-2 depletion by specific small interfering RNA inhibited lamellipodia in a similar manner. Dyn2(K44A) induced Rac mislocalization away from cell edges, into abnormal dorsal ruffles, and led to increased total Rac activity. Fluorescence resonance energy transfer imaging of Rac activity confirmed its predominant localization to aberrant dorsal ruffles in the presence of dominant-negative dyn2(K44A). Dyn2(K44A) induced the accumulation of tubulated structures bearing membrane-bound Rac-GFP. Constitutively active but not wild-type GFP-Rac was found on macropinosomes and Rac-dependent, platelet-derived growth factor-induced macropinocytosis was abolished by Dyn2(K44A) expression. These data suggest an indispensable role of dynamin in Rac trafficking to allow for lamellipodia formation and cell spreading.


2002 ◽  
Vol 13 (10) ◽  
pp. 3493-3507 ◽  
Author(s):  
Yue Xu ◽  
Sally Martin ◽  
David E. James ◽  
Wanjin Hong

The subcellular localization, interacting partners, and function of GS15, a Golgi SNARE, remain to be established. In our present study, it is revealed that unlike proteins (Bet1 and the KDEL receptor) cycling between the Golgi and the intermediate compartment (IC, inclusive of the ER exit sites), GS15 is not redistributed into the IC upon incubation at 15°C or when cells are treated with brefeldin A. Immuno-electron microscopy (immuno-EM) reveals that GS15 is mainly found in the medial-cisternae of the Golgi apparatus and adjacent tubulo-vesicular elements. Coimmunoprecipitation experiments suggest that GS15 exists in a distinct SNARE complex that contains SNAREs (syntaxin5, GS28, and Ykt6) that are implicated in both ER-to-Golgi and intra-Golgi transport but not with SNAREs involved exclusively in ER-to-Golgi traffic. Furthermore, components of COPI coat can be selectively coimmunoprecipitated with GS15 from Golgi extracts. Overexpression of mutant forms of GS15 affects the normal distribution of cis- and medial-Golgi proteins (GS28, syntaxin 5, and Golgi mannosidase II), whereas proteins of the trans-Golgi and TGN (Vti1-rp2/Vti1a and syntaxin 6) and Golgi matrix/scaffold (GM130 and p115) are less affected. When the level of GS15 is reduced by duplex 21-nt small interfering RNA (siRNA)-mediated knockdown approach, diverse markers of the Golgi apparatus are redistributed into small dotty and diffuse labeling, suggesting an essential role of GS15 in the Golgi apparatus.


2010 ◽  
Vol 189 (4) ◽  
pp. 651-659 ◽  
Author(s):  
Pierre Romé ◽  
Emilie Montembault ◽  
Nathalie Franck ◽  
Aude Pascal ◽  
David M. Glover ◽  
...  

Aurora A is a spindle pole–associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150glued on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated. If aurora A's function is compromised, dynactin and dynein become enriched on mitotic spindle microtubules. Phosphorylation sites are localized within the conserved microtubule-binding domain (MBD) of the p150glued. Although wild-type p150glued binds weakly to spindle microtubules, a variant that can no longer be phosphorylated by aurora A remains associated with spindle microtubules and fails to rescue depletion of endogenous p150glued. Our results suggest that aurora A kinase participates in vivo to the phosphoregulation of the p150glued MBD to limit the microtubule binding of the dynein–dynactin complex and thus regulates spindle assembly.


Sign in / Sign up

Export Citation Format

Share Document