scholarly journals Impaired Akt Activity Down-Modulation, Caspase-3 Activation, and Apoptosis in Cells Expressing a Caspase-resistant Mutant of RasGAP at Position 157

2005 ◽  
Vol 16 (8) ◽  
pp. 3511-3520 ◽  
Author(s):  
Jiang-Yan Yang ◽  
Joël Walicki ◽  
David Michod ◽  
Gilles Dubuis ◽  
Christian Widmann

RasGAP bears two caspase-3 cleavage sites that are used sequentially as caspase activity increases in cells. When caspase-3 is mildly activated, RasGAP is first cleaved at position 455. This leads to the production of an N-terminal fragment, called fragment N, that activates the Ras-PI3K-Akt pathway and that promotes cell survival. At higher caspase activity, RasGAP is further cleaved at position 157 generating two small N-terminal fragments named N1 and N2. We have now determined the contribution of this second cleavage event in the regulation of apoptosis using cells in which the wild-type RasGAP gene has been replaced by a cDNA encoding a RasGAP mutant that cannot be cleaved at position 157. Our results show that cleavage of fragment N at position 157 leads to a marked reduction in Akt activity. This is accompanied by efficient processing of caspase-3 that favors cell death in response to various apoptotic stimuli. In nontumorigenic cells, fragments N1 and N2 do not modulate apoptosis. Therefore, the role of the second caspase-mediated cleavage of RasGAP is to allow the inactivation of the antiapoptotic function of fragment N so that caspases are no longer hampered in their ability to kill cells.

2007 ◽  
Vol 75 (7) ◽  
pp. 3256-3263 ◽  
Author(s):  
Rachel P. Wilkie ◽  
Margret C. M. Vissers ◽  
Mike Dragunow ◽  
Mark B. Hampton

ABSTRACT Neutrophils play a prominent role in host defense. Phagocytosis of bacteria leads to the formation of an active NADPH oxidase complex that generates reactive oxygen species for bactericidal purposes. A critical step in the resolution of inflammation is the uptake of neutrophils by macrophages; however, there are conflicting reports on the mechanisms leading to the apoptosis of phagocytic neutrophils. The aim of this study was to clarify the role of effector caspases in these processes. Caspase activity was measured by DEVDase activity assays or immunofluorescence detection of active caspase-3. With normal human and wild-type murine neutrophils there was no caspase activation following phagocytosis of Staphylococcus aureus. However, caspase activity was observed in phagocytic neutrophils with a defective NADPH oxidase, including neutrophils isolated from X-linked gp91phox knockout chronic granulomatous disease mice. These results indicate that a functional NADPH oxidase and the generation of oxidants in the neutrophil phagosome prevent the activation of the cytoplasmic caspase cascade.


2002 ◽  
Vol 115 (13) ◽  
pp. 2669-2678 ◽  
Author(s):  
Anna Gustavsson ◽  
Annika Armulik ◽  
Cord Brakebusch ◽  
Reinhard Fässler ◽  
Staffan Johansson ◽  
...  

Invasin of Yersinia pseudotuberculosis binds to β1-integrins on host cells and triggers internalization of the bacterium. To elucidate the mechanism behind the β1-integrin-mediated internalization of Yersinia, a β1-integrin-deficient cell line, GD25, transfected with wild-type β1A, β1B or different mutants of the β1A subunit was used. Both β1A and β1B bound to invasin-expressing bacteria, but only β1A was able to mediate internalization of the bacteria. The cytoplasmic region of β1A, differing from β1B, contains two NPXY motifs surrounding a double threonine site. Exchanging the tyrosines of the two NPXYs to phenylalanines did not inhibit the uptake, whereas a marked reduction was seen when the first tyrosine (Y783) was exchanged to alanine. A similar reduction was seen when the two nearby threonines (TT788-9) were exchanged with alanines. It was also noted that cells affected in bacterial internalization exhibited reduced spreading capability when seeded onto invasin, suggesting a correlation between the internalization of invasin-expressing bacteria and invasin-induced spreading. Likewise, integrins defective in forming peripheral focal complex structures was unable to mediate uptake of invasin-expressing bacteria.


1994 ◽  
Vol 125 (5) ◽  
pp. 1057-1065 ◽  
Author(s):  
S C Dahl ◽  
R W Geib ◽  
M T Fox ◽  
M Edidin ◽  
D Branton

A spectrin-based membrane skeleton is important for the stability and organization of the erythrocyte. To study the role of spectrin in cells that possess complex cytoskeletons, we have generated alpha-spectrin-deficient erythroleukemia cell lines from sph/sph mice. These cells contain beta-spectrin, but lack alpha-spectrin as determined by immunoblot and Northern blot analyses. The effects of alpha-spectrin deficiency are apparent in the cells' irregular shape and fragility in culture. Capping of membrane glycoproteins by fluorescent lectin or antibodies occurs more rapidly in sph/sph than in wild-type erythroleukemia cells, and the caps appear more concentrated. The data support the idea that spectrin plays an important role in organizing membrane structure and limiting the lateral mobility of integral membrane glycoproteins in cells other than mature erythrocytes.


2017 ◽  
Vol 95 (6) ◽  
pp. 634-643
Author(s):  
Juliano Alves ◽  
Miguel Garay-Malpartida ◽  
João M. Occhiucci ◽  
José E. Belizário

Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD198↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (kcat/KM) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3608-3608 ◽  
Author(s):  
Sivahari P. Gorantla ◽  
Tobias Dechow ◽  
Christian Peschel ◽  
Justus Duyster

Abstract A point mutation in JAK2 (V617F) has been described recently in patients with myeloproliferative diseases like polycythemia vera (PV), essential thrombocythemia (ET) and chronic idiopathic myelofibrosis (IMF). This V617F point mutation in JAK2 has been shown to activate several downstream pathways including STAT5 and ERK. This mutation also renders haematopoietic progenitors cytokine-independent. The role of the V617F mutation in oncogenesis is not fully understood. In this study we aim to dissect the role of the SH2 domain in JAK2-V617F mediated transformation. Stable Ba/F3 cell lines expressing JAK2-wild type (wt), JAK2-V617F, JAK2-R439K (SH2 domain mutation) and JAK2-V617F/R439K mutants were generated. Cell proliferation assays showed that JAK2-V617F transforms Ba/F3 cells and renders them IL3 independent, while wild type JAK2 and JAK2-R439K could not. Surprisingly, JAK2-V617F/R439K was not able to induce a transformed phenotype in Ba/F3 cells. Imunoblotting revealed strong activation of JAK2, STAT5 and ERK in cells expressing JAK2-V617F, whereas no such activation could be found in JAK2-wt, JAK2-R439K and in JAK2-V617F/R439K expressing cells. Thus the SH2 domain in JAK2-V617F seems to play a crucial role in the transformation of Ba/F3 cells containing a heterodimeric (IL-3) cytokine receptor. It has been demonstrated that JAK2-V617F induces cellular transformation more efficiently in cells expressing a homodimeric cytokine receptor such as the erythropoetin receptor. We therefore established Ba/F3 cells overexpressing EpoR together with JAK2-wt, JAK2-V617F, JAK2-R439K and JAK2-V617F/R439K. In contrast to parental Ba/F3 cells, EpoR expressing Ba/F3 cells could be transformed by both JAK2-V617F as well as JAK2-V617F/R439K. Both the single and double mutant Ba/F3 cells showed strong activation of STAT5 and ERK. This suggests that an intact SH2 domain is not required for homodimeric cytokine receptor expressing cells. These results show that transformation by JAK2-V617F requires an intact SH2 domain only in cells expressing a heterodimeric cytokine receptor. In contrast, cells containing a homodimeric cytokine receptor are able to induce transformation in the presence of JAK2-V617F with an additional SH2 mutation. Further progress in understanding the role of the SH2 domain in JAK2-V617F mediated transformation may help in delineating downstream signalling with therapeutic implications.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3152-3152
Author(s):  
Stavroula Baritaki ◽  
Eriko Suzuki ◽  
Mario I. Vega ◽  
Haiming Chen ◽  
James R. Berenson ◽  
...  

Abstract Abstract 3152 We have reported that treatment of B-NHL cell lines with rituximab resulted in the inhibition of the constitutively activated PI3K-AKT pathway (Suzuki et al., Oncogene 26:6184, 2007). Examination of the mechanism by which rituximab inhibits the PI3K/Akt pathway revealed that it induces the expression of the PI3K/Akt inhibitor PTEN (phosphatase and tensin homolog detected on chromosome 10). Time kinetic analysis indicated that the induction of PTEN occurs as early as 6 h post-rituximab treatment. The objective of this study is to delineate the molecular mechanism by which PTEN is induced by rituximab. We hypothesized that rituximab-induced inhibition of the constitutively activated NF-κB pathway, directly and indirectly through inhibition of the PI3K/Akt pathway, may result in the inhibition downstream of the PTEN transcription factors and repressors, Snail and Yin Yang 1 (YY1). Snail has been reported to repress the transcription of PTEN (Escriva, M et al., Mol Cell Biol 28:1528, 2008). Also, YY1 has been reported to positively regulate Snail transcription and expression (Palmer, MB et al., Mol Cancer Res 7:221, 2009). In addition, the induction of PTEN by rituximab also results, in a feed-back loop, in the suppression of YY1 and Snail and potentiates the induction of PTEN (Petriella et al, Cancer Biology Therapy, 8, 1389, 2009). This hypothesis was tested using the B-NHL Ramos cells, as model, for these studies. Treatment of Ramos with rituximab (20ug/ml for 16 hours) resulted in the inhibition of NF-κB, Snail, and YY1 and induction of PTEN expression as assessed by western. The direct role of Snail and YY1 in the suppression of PTEN expression was demonstrated in cells transfected with Snail or YY1 siRNA. The treated cells demonstrated significant induction of PTEN and, concomitantly, inhibition of the PI3K/Akt pathway. We have reported that rituximab sensitizes B-NHL cells to apoptosis by various chemotherapeutic drugs and demonstrated that inhibition of the PI3K/Akt pathway by various inhibitors mimics rituximab in the sensitization of the tumor cells to apoptosis by chemotherapeutic drugs (Suzuki et al., Oncogene 26:6184, 2007). The role of PTEN induction by rituximab in the sensitization of resistanr B-NHL cells to drug-apoptosis was demonstrated in cells pre-treated with rituximab (to induce PTEN) and then transfected with PTEN siRNA. The transfected cells were resistant to drug-induced apoptosis compared to the control siRNA treated cells. Altogether, the above findings demonstrate that rituximab-induced inhibition of the PI3K/Akt pathway is due, in part, to the induction of PTEN through rituximab-induced inhibition of the PTEN repressors Snail and YY1, downstream of NF-κB. Thus, the induction of PTEN by rituximab plays a major role in the reversal of tumor cell resistance to chemotherapeutic drugs. Further, the findings reveal that the dysregulated PI3K/Akt/NF-κB/Snail/YY1/PTEN loop in B-NHL cells can be interfered by rituximab. This interference leads to the inhibition of cell survival and reversal of resistance through sensitization to drugs. We propose that the gene products in this loop are potential novel therapeutic targets in the treatment of lymphoma. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaoping Li ◽  
Rong Luo ◽  
Rongjian Jiang ◽  
Xianmin Meng ◽  
Xiushan Wu ◽  
...  
Keyword(s):  

2012 ◽  
Vol 302 (10) ◽  
pp. G1133-G1142 ◽  
Author(s):  
Masashi Yasuda ◽  
Shinichi Kato ◽  
Naoki Yamanaka ◽  
Maho Iimori ◽  
Daichi Utsumi ◽  
...  

Although NADPH oxidase 1 (NOX1) has been shown to be highly expressed in the gastrointestinal tract, the physiological and pathophysiological roles of this enzyme are not yet fully understood. In the present study, we investigated the role of NOX1 in the pathogenesis of intestinal mucositis induced by the cancer chemotherapeutic agent 5-fluorouracil (5-FU) in mice. Intestinal mucositis was induced in Nox1 knockout (Nox1KO) and littermate wild-type (WT) mice via single, daily administration of 5-FU for 5 days. In WT mice, 5-FU caused severe intestinal mucositis characterized by a shortening of villus height, a disruption of crypts, a loss of body weight, and diarrhea. In Nox1KO mice, however, the severity of mucositis was significantly reduced, particularly with respect to crypt disruption. The numbers of apoptotic caspase-3- and caspase-8-activated cells in the intestinal crypt increased 24 h after the first 5-FU administration but were overall significantly lower in Nox1KO than in WT mice. Furthermore, the 5-FU-mediated upregulation of TNF-α, IL-1β, and NOX1 and the production of reactive oxygen species were significantly attenuated in Nox1KO mice compared with that in WT mice. These findings suggest that NOX1 plays an important role in the pathogenesis of 5-FU-induced intestinal mucositis. NOX1-derived ROS production following administration of 5-FU may promote the apoptotic response through upregulation of inflammatory cytokines.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 213-213
Author(s):  
Shabbir Ansari ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Tissue factor (TF) is the cellular cofactor for the serine protease coagulation factor VIIa (FVIIa). The TF-FVIIa complex formed on the cell surface initiates the coagulation cascade. It is believed that most of the TF molecules on the cell surface of a resting cell exist in an encrypted state with very little procoagulant activity. Encrypted TF must undergo decryption to become fully active. The exact mechanisms by which TF activity on the cell surface is regulated are unknown. Exposure of phosphatidylserine (PS) to the outer leaflet of the cell membrane is thought to play a critical role in TF decryption. Recent studies of molecular dynamics simulation of TF ectodomain in solution and on the surface of anionic phospholipids suggested a direct interaction of PS headgroups with specific residues in TF. At present, the role of the putative lipid interactive residues of TF in TF decryption is unknown. In the present study, we investigated the potential role of TF direct interaction with the cell surface lipids on basal TF activity as well as enhanced TF activity following the decryption using different TF mutants. Plasmids or adenoviral constructs encoding wild-type or mutant TF (mutations in the putative lipid binding region) were used to transduce TF expression in CHO-K1 or monocytic THP-1 cells, respectively. TF protein expression level at the cell surface and FVIIa binding to the cell surface TF were evaluated by radioligand binding studies using 125I-labeled TF mAb or FVIIa, respectively. TF-FVIIa coagulant activity on the cell surface was determined in FX activation assay. Data of these studies showed that all TF mutants were capable of interacting with FVIIa with no apparent defect. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A-exhibited a similar or slightly higher TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A and TFK166A, was reduced substantially to a range of 40% - 70% of that of wild-type TF. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% loss of TF specific activity. Mutation of all nine lipid binding residues together (DLBR) did not further decrease the specific activity of TF anymore than that of mutation of G164 alone. Comparison of the present data with the published data on these mutants revealed that some of the TF residues that are critical for regulating TF activity on liposomes are not crucial for TF activity on the cell surface. To address whether the decreased FXa generation seen with the select TF variants is caused by changes in TF-membrane interaction or by the substrate interaction with TF/FVIIa complex, we performed Michaelis-Menten kinetics of FX activation for two of TF mutants (TFS163A and TFG164A). Results of this study suggested that there were no significant differences in Km values between wild-type TF and TF mutants (wild-type TF, 51 ± 14.6 nM; TFS163A, 68 ± 19.5 nM; TFG164A, 39 ± 18.4 nM, n=4). Interestingly, mutation of the selective residues in the lipid binding region failed to abrogate the PS-dependent TF decryption. The fold-increase in TF activity in cells expressing wild-type TF or TF variants was similar following cell activation with either HgCl2 or calcium ionomycin treatment. Annexin V markedly diminished the increased TF-FVIIa activation of FX in cells expressing wild-type TF as well as cells expressing the TF mutant (DLBR mutant). Overall, our data suggest that the regulation of TF activity at the cell surface milieu may be different from that of PC/PS vesicles and TF region other than earlier identified LBR may be responsible for enhancing TF activity following the PS exposure. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 180 (1) ◽  
pp. 90-95 ◽  
Author(s):  
Li Fang ◽  
Yan Hou ◽  
Masayori Inouye

ABSTRACT Upon temperature downshift, a group of proteins called cold shock proteins, such as CspA, CspB, and CsdA, are transiently induced inEscherichia coli. However, when the 5′ untranslated region (5′ UTR) of cspA mRNA is overproduced at low temperature, the expression of cold shock genes is prolonged or derepressed. It has been proposed that this effect is due to highly conserved 11-base sequences designated the “cold box” existing in the 5′ UTRs ofcspA, cspB, and csdA. Here, we demonstrate that the overproduction of the 5′ UTR of not onlycspA but also cspB and csdA mRNAs causes derepression of all three genes at the same time. Conversely, when the cold-box region was deleted from the cspA 5′ UTR its derepression function was abolished. The amount of mRNA from the chromosomal cspA gene was much higher in cells overproducing the wild-type 5′ UTR by means of a plasmid than it was in cells overproducing the cold-box-deleted 5′ UTR. The stability of the chromosomal cspA mRNA in cells overproducing the wild-type 5′ UTR was almost identical to that in cells overproducing the cold-box-deleted 5′ UTR. Therefore, the derepression ofcspA caused by overproduction of 5′ UTR at the end of the acclimation phase occurs at the level of transcription but not by mRNA stabilization, indicating that the cold-box region plays a negative role in cspA transcription in cold shock-adapted cells. The role of the cold-box region was further confirmed with acspA mutant strain containing a cold-box-deletedcspA gene integrated into the chromosome, which showed a high level of constitutive production of CspA but not CspB during exponential growth at low temperature.


Sign in / Sign up

Export Citation Format

Share Document