scholarly journals The Mitogen-activated Protein Kinase p38 Links Shiga Toxin-dependent Signaling and Trafficking

2008 ◽  
Vol 19 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Sébastien Wälchli ◽  
Sigrid S. Skånland ◽  
Tone F. Gregers ◽  
Silje U. Lauvrak ◽  
Maria L. Torgersen ◽  
...  

Shiga toxin (Stx) binds to the cell, and it is transported via endosomes and the Golgi apparatus to the endoplasmic reticulum and cytosol, where it exerts its toxic effect. We have recently shown that Stx activates the tyrosine kinase Syk, which in turn induces clathrin phosphorylation and up-regulates Stx uptake. Here, we show that toxin-induced signaling can also regulate another step in intracellular Stx transport. We demonstrate that transport of Stx to the Golgi apparatus is dependent on the mitogen-activated protein kinase p38. Treatment of cells with chemical inhibitors or small interfering RNA targeting p38 inhibited Stx transport to the Golgi and reduced Stx toxicity. This p38 dependence is specific to Stx, because transport of the related toxin ricin was not affected by p38 inhibition. Stx rapidly activated p38, and recruited it to early endosomes in a Ca2+-dependent manner. Furthermore, agonist-induced oscillations in cytosolic Ca2+levels were inhibited upon Stx stimulation, possibly reflecting Stx-dependent local alterations in cytosolic Ca2+levels. Intracellular transport of Stx is Ca2+dependent, and we provide evidence that Stx activates a signaling cascade involving cross talk between Ca2+and p38, to regulate its trafficking to the Golgi apparatus.

2013 ◽  
Vol 24 (3) ◽  
pp. 222-233 ◽  
Author(s):  
Christine Kienzle ◽  
Stephan A. Eisler ◽  
Julien Villeneuve ◽  
Tilman Brummer ◽  
Monilola A. Olayioye ◽  
...  

Before entering mitosis, the stacks of the Golgi cisternae are separated from each other, and inhibiting this process delays entry of mammalian cells into mitosis. Protein kinase D (PKD) is known to be involved in Golgi-to–cell surface transport by controlling the biogenesis of specific transport carriers. Here we show that depletion of PKD1 and PKD2 proteins from HeLa cells by small interfering RNA leads to the accumulation of cells in the G2 phase of the cell cycle and prevents cells from entering mitosis. We further provide evidence that inhibition of PKD blocks mitotic Raf-1 and mitogen-activated protein kinase kinase (MEK) activation, and, as a consequence, mitotic Golgi fragmentation, which could be rescued by expression of active MEK1. Finally, Golgi fluorescence recovery after photobleaching analyses demonstrate that PKD is crucial for the cleavage of the noncompact zones of Golgi membranes in G2 phase. Our findings suggest that PKD controls interstack Golgi connections in a Raf-1/MEK1–dependent manner, a process required for entry of the cells into mitosis.


2021 ◽  
Vol 22 (8) ◽  
pp. 4211
Author(s):  
Yen-Tze Liu ◽  
Hsin-Yu Ho ◽  
Chia-Chieh Lin ◽  
Yi-Ching Chuang ◽  
Yu-Sheng Lo ◽  
...  

Platyphyllenone is a type of diarylheptanoid that exhibits anti-inflammatory and chemoprotective effects. However, its effect on oral cancer remains unclear. In this study, we investigated whether platyphyllenone can promote apoptosis and autophagy in SCC-9 and SCC-47 cells. We found that it dose-dependently promoted the cleavage of PARP; caspase-3, -8, and -9 protein expression; and also led to cell cycle arrest at the G2/M phase. Platyphyllenone up-regulated LC3-II and p62 protein expression in both SCC-9 and SCC-47 cell lines, implying that it can induce autophagy. Furthermore, the results demonstrated that platyphyllenone significantly decreased p-AKT and increased p-JNK1/2 mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner. The specific inhibitors of p-JNK1/2 also reduced platyphyllenone-induced cleavage of PARP, caspase-3, and caspase -8, LC3-II and p62 protein expression. These findings are the first to demonstrate that platyphyllenone can induce both autophagy and apoptosis in oral cancers, and it is expected to provide a therapeutic option as a chemopreventive agent against oral cancer proliferation.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
Mingyu Hou ◽  
Wenhui Wang ◽  
Feizi Hu ◽  
Yuanxing Zhang ◽  
Dahai Yang ◽  
...  

ABSTRACT Bacterial phosphothreonine lyases have been identified to be type III secretion system (T3SS) effectors that irreversibly dephosphorylate host mitogen-activated protein kinase (MAPK) signaling to promote infection. However, the effects of phosphothreonine lyase on nuclear factor κB (NF-κB) signaling remain largely unknown. In this study, we detected significant phosphothreonine lyase-dependent p65 degradation during Edwardsiella piscicida infection in macrophages, and this degradative effect was blocked by the protease inhibitor MG132. Further analysis revealed that phosphothreonine lyase promotes the dephosphorylation and ubiquitination of p65 by inhibiting the phosphorylation of mitogen- and stress-activated protein kinase-1 (MSK1) and by inhibiting the phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2), p38α, and c-Jun N-terminal kinase (JNK). Moreover, we revealed that the catalytic active site of phosphothreonine lyase plays a critical role in regulating the MAPK-MSK1-p65 signaling axis. Collectively, the mechanism described here expands our understanding of the pathogenic effector in not only regulating MAPK signaling but also regulating p65. These findings uncover a new mechanism by which pathogenic bacteria overcome host innate immunity to promote pathogenesis.


2005 ◽  
Vol 391 (2) ◽  
pp. 433-440 ◽  
Author(s):  
Simon Rousseau ◽  
Mark Peggie ◽  
David G. Campbell ◽  
Angel R. Nebreda ◽  
Philip Cohen

The neurite outgrowth inhibitor protein Nogo is one of 300 proteins that contain a reticulon homology domain, which is responsible for their association with the endoplasmic reticulum. Here we have found that the Nogo-B spliceform becomes phosphorylated at Ser107 in response to lipopolysaccharide in RAW264 macrophages or anisomycin in HeLa cells. The phosphorylation is prevented by SB 203580, an inhibitor of SAPK2a (stress-activated protein kinase 2a)/p38α and SAPK2b/p38β, and does not occur in embryonic fibroblasts generated from SAPK2a/p38α-deficient mice. Nogo-B is phosphorylated at Ser107in vitro by MAPKAP-K2 [MAPK (mitogen-activated protein kinase)-activated protein kinase-2] or MAPKAP-K3, but not by other protein kinases that are known to be activated by SAPK2a/p38α. The anisomycin-induced phosphorylation of Ser107 in HeLa cells can be prevented by ‘knockdown’ of MAPKAP-K2 using siRNA (small interfering RNA). Taken together, our results identify Nogo-B as a new physiological substrate of MAPKAP-K2.


2010 ◽  
Vol 78 (5) ◽  
pp. 1859-1863 ◽  
Author(s):  
Masood A. Khan ◽  
Richard M. Gallo ◽  
Randy R. Brutkiewicz

ABSTRACT Lethal toxin (LT) is a critical virulence factor of Bacillus anthracis and an important means by which this bacterium evades the host's immune system. In this study, we demonstrate that CD1d-expressing cells treated with LT have reduced CD1d-mediated antigen presentation. We earlier showed an important role for the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 (ERK1/2) in the regulation of CD1d-mediated antigen presentation, and we report here that LT impairs antigen presentation by CD1d in an ERK1/2-dependent manner. Similarly, LT and the ERK1/2 pathway-specific inhibitor U0126 caused a decrease in major histocompatibility complex (MHC) class II-mediated antigen presentation. Confocal microscopy analyses revealed altered intracellular distribution of CD1d and LAMP-1 in LT-treated cells, similar to the case for ERK1/2-inhibited cells. These results suggest that Bacillus anthracis has the ability to evade the host's innate immune system by reducing CD1d-mediated antigen presentation through targeting the ERK1/2 pathway.


2009 ◽  
Vol 90 (12) ◽  
pp. 3002-3009 ◽  
Author(s):  
Wen T. Ji ◽  
Long H. Lee ◽  
Feng L. Lin ◽  
Lai Wang ◽  
Hung J. Liu

Stimulated by energetic stress, AMP-activated protein kinase (AMPK) controls several cellular functions. It was discovered here that infection of Vero cells with avian reovirus (ARV) upregulated AMPK and mitogen-activated protein kinase (MAPK) p38 phosphorylation in a time- and dose-dependent manner. Being an energy status sensor, AMPK is potentially an upstream regulator of MAPK p38. Treatment with 5-amino-4-imidazolecarboxamide ribose (AICAR), a well-known activator of AMPK, induced phosphorylation of MAPK p38. Unlike AICAR, wortmannin or rapamycin did not induce phosphorylation of MAPK p38, suggesting that mTOR inhibition is not a determining factor in MAPK p38 phosphorylation. Inhibition of AMPK by compound C antagonized the effect of AICAR on MAPK p38 in Vero cells. Specific inhibition of AMPK by small interfering RNA or compound C also suppressed ARV-induced phosphorylation of MAPK kinase (MKK) 3/6 and MAPK p38 in Vero and DF-1 cells, thereby providing a link between AMPK signalling and the MAPK p38 pathway. The mechanism of ARV-enhanced phosphorylation of MKK 3/6 and MAPK p38 in cells was not merely due to glucose deprivation, a probable activator of AMPK. In the current study, direct inhibition of MAPK p38 by SB202190 decreased the level of ARV-induced syncytium formation in Vero and DF-1 cells, and decreased the protein levels of ARV σA and σC and the progeny titre of ARV, suggesting that activation of MAPK p38 is beneficial for ARV replication. Taken together, these results suggested that AMPK could facilitate MKK 3/6 and MAPK p38 signalling that is beneficial for ARV replication. Although well studied in energy metabolism, this study provides evidence for the first time that AMPK plays a role in modulating ARV and host-cell interaction.


2005 ◽  
Vol 25 (22) ◽  
pp. 9753-9763 ◽  
Author(s):  
Shobha Vasudevan ◽  
Nicole Garneau ◽  
Danny Tu Khounh ◽  
Stuart W. Peltz

ABSTRACT AU-rich-element (ARE)-mediated mRNA regulation occurs in Saccharomyces cerevisiae in response to external and internal stimuli through the p38 mitogen-activated protein kinase (MAPK)/Hog1p pathway. We demonstrate that the ARE-bearing MFA2 3′ untranslated region (UTR) controls translation efficiency in a p38 MAPK/Hog1p-dependent manner in response to carbon source growth conditions. The carbon source-regulated effect on MFA2 3′-UTR-controlled translation involves the role of conserved ARE binding proteins, the ELAV/TIA-1-like Pub1p, which can interact with the cap/eIF4G complex, and the translation/mRNA stability factor poly(A) binding protein (Pab1p). Pub1p binds the MFA2 3′-UTR in a p38 MAPK/Hog1p-regulated manner in response to carbon source growth conditions. Significantly, the p38 MAPK/Hog1p is also required to modulate Pab1p in response to carbon source. We find that Pab1p can bind the MFA2 3′-UTR in a regulated manner to control MFA2 3′-UTR reporter translation. Binding of full-length Pab1p to the MFA2 3′-UTR correlates with translation repression. Importantly, Pab1p binds the MFA2 3′-UTR only in a PUB1 strain, and correlating with this requirement, Pub1p controls translation repression of MFA2 in a carbon source/Hog1p-regulated manner. These results suggest that the p38 MAPK/Hog1p pathway regulates 3′-UTR-mediated translation by modulating recruitment of Pab1p and Pub1p, which can interact with the translation machinery.


1997 ◽  
Vol 272 (3) ◽  
pp. G401-G407 ◽  
Author(s):  
M. J. Bragado ◽  
A. Dabrowski ◽  
G. E. Groblewski ◽  
J. A. Williams

The presence of the 90-kDa ribosomal S6 protein kinase (p90(rsk)) in isolated rat pancreatic acini was demonstrated by Western blotting and immunoprecipitation with anti-p90(rsk). Cholecystokinin (CCK) activated p90(rsk) activity in a time- and dose-dependent manner and increased its phosphorylation. The threshold concentration of CCK was 10 pM and the maximal effect was seen at 1 nM. An increase in p90(rsk) was observed 1 min after 1 nM CCK stimulation, reaching a maximum at 10 min, when p90(rsk) activity was increased 5.4-fold. Carbachol and bombesin, but not vasoactive intestinal peptide, also activated p90(rsk). CCK-induced activation of p90(rsk) appears to be mediated by protein kinase C (PKC), since 12-O-tetradecanoylphorbol-13-acetate increased p90(rsk) activity 5.3-fold. GF-109293X, a potent inhibitor of PKC, strongly inhibited CCK-evoked p90(rsk) activity. Treatment of acini with ionomycin or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no effect, indicating that mobilization of intracellular Ca2+ by CCK is not important in p90(rsk) activation. Although there were some quantitative differences in the extent of inhibition, the specific inhibitors [rapamycin, wortmannin, mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059, and GF-109293X] had parallel effects on p90(rsk) and p42(mapk) activities, consistent with a model in which p90(rsk) can be regulated in acini by MAPK.


Sign in / Sign up

Export Citation Format

Share Document