scholarly journals The BNIP-2 and Cdc42GAP Homology (BCH) Domain of p50RhoGAP/Cdc42GAP Sequesters RhoA from Inactivation by the Adjacent GTPase-activating Protein Domain

2010 ◽  
Vol 21 (18) ◽  
pp. 3232-3246 ◽  
Author(s):  
Yi Ting Zhou ◽  
Li Li Chew ◽  
Sheng-cai Lin ◽  
Boon Chuan Low

The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.

Author(s):  
Wenping Song ◽  
Jinhua Chen ◽  
Shuolei Li ◽  
Ding Li ◽  
Yongna Zhang ◽  
...  

Background: In recent years, targeted therapy combined with traditional chemoradiotherapy and surgery has brought new opportunities for cancer treatment. However, the complex characteristics of cancer, such as heterogeneity and diversity, limit the clinical success of targeted drugs. The discovery of new cancer targets and deepening the understanding of their functional mechanisms will bring additional promising application prospects for the research and development of personalized cancer-targeted drugs. Objective: This study aimed to summarize the role of the Rho GTPase activating protein 9 (ARHGAP9) gene in tumorigenesis and development to discover therapeutic targets for cancer in the future. Methods: For this review, we collected patents from the databases of Espacenet and WIPO and articles from PubMed that were related to the ARHGAP9 gene. Results: Genetic/epigenetic variations and abnormal expression of the ARHGAP9 gene are closely associated with a variety of diseases, including cancer. ARHGAP9 can inactivate Rho GTPases by hydrolyzing GTP into GDP and regulate cancer cellular events, including proliferation, differentiation, apoptosis, migration and invasion, by inhibiting JNK/ERK/p38 and PI3K/AKT signaling pathways. In addition to reviewing these mechanisms, we assessed various patents on ARHGAP9 to determine whether ARHGAP9 might be used as a predictive biomarker for diagnosis/prognosis evaluation and a druggable target for cancer treatment. Conclusion: In this review, the current knowledge of ARHGAP9 in cancer is summarized with an emphasis on its molecular function, regulatory mechanism and disease implications. Its characterization is crucial to understanding its important roles during different stages of cancer progression and therapy as a predictive biomarker and/or target.


2002 ◽  
Vol 22 (24) ◽  
pp. 8721-8734 ◽  
Author(s):  
Takeshi Nakamura ◽  
Misako Komiya ◽  
Kiyoaki Sone ◽  
Eiji Hirose ◽  
Noriko Gotoh ◽  
...  

ABSTRACT Neurotrophins are key regulators of the fate and shape of neuronal cells and act as guidance cues for growth cones by remodeling the actin cytoskeleton. Actin dynamics is controlled by Rho GTPases. We identified a novel Rho GTPase-activating protein (Grit) for Rho/Rac/Cdc42 small GTPases. Grit was abundant in neuronal cells and directly interacted with TrkA, a high-affinity receptor for nerve growth factor (NGF). Another pool of Grit was recruited to the activated receptor tyrosine kinase through its binding to N-Shc and CrkL/Crk, adapter molecules downstream of activated receptor tyrosine kinases. Overexpression of the TrkA-binding region of Grit inhibited NGF-induced neurite elongation. Further, we found some tendency for neurite promotion in full-length Grit-overexpressing PC12 cells upon NGF stimulation. These results suggest that Grit, a novel TrkA-interacting protein, regulates neurite outgrowth by modulating the Rho family of small GTPases.


2001 ◽  
Vol 21 (5) ◽  
pp. 1463-1474 ◽  
Author(s):  
Feng Bi ◽  
Balazs Debreceni ◽  
Kejin Zhu ◽  
Barbara Salani ◽  
Alessandra Eva ◽  
...  

ABSTRACT The dbl oncogene encodes a prototype member of the Rho GTPase guanine nucleotide exchange factor (GEF) family. Oncogenic activation of proto-Dbl occurs through truncation of the N-terminal 497 residues. The C-terminal half of proto-Dbl includes residues 498 to 680 and 710 to 815, which fold into the Dbl homology (DH) domain and the pleckstrin homology (PH) domain, respectively, both of which are essential for cell transformation via the Rho GEF activity or cytoskeletal targeting function. Here we have investigated the mechanism of the apparent negative regulation of proto-Dbl imposed by the N-terminal sequences. Deletion of the N-terminal 285 or C-terminal 100 residues of proto-Dbl did not significantly affect either its transforming activity or GEF activity, while removal of the N-terminal 348 amino acids resulted in a significant increase in both transformation and GEF potential. Proto-Dbl displayed a mostly perinuclear distribution pattern, similar to a polypeptide derived from its N-terminal sequences, whereas onco-Dbl colocalized with actin stress fibers, like the PH domain. Coexpression of the N-terminal 482 residues with onco-Dbl resulted in disruption of its cytoskeletal localization and led to inhibition of onco-Dbl transforming activity. The apparent interference with the DH and PH functions by the N-terminal sequences can be rationalized by the observation that the N-terminal 482 residues or a fragment containing residues 286 to 482 binds specifically to the PH domain, limiting the access of Rho GTPases to the catalytic DH domain and masking the intracellular targeting function of the PH domain. Taken together, our findings unveiled an autoinhibitory mode of regulation of proto-Dbl that is mediated by the intramolecular interaction between its N-terminal sequences and PH domain, directly impacting both the GEF function and intracellular distribution.


1995 ◽  
Vol 15 (8) ◽  
pp. 4578-4584 ◽  
Author(s):  
S B Cantor ◽  
T Urano ◽  
L A Feig

Ral proteins constitute a distinct family of Ras-related GTPases. Although similar to Ras in amino acid sequence, Ral proteins are activated by a unique nucleotide exchange factor and inactivated by a distinct GTPase-activating protein. Unlike Ras, they fail to promote transformed foci when activated versions are expressed in cells. To identify downstream targets that might mediate a Ral-specific function, we used a Saccharomyces cerevisiae-based interaction assay to clone a novel cDNA that encodes a Ral-binding protein (RalBP1). RalBP1 binds specifically to the active GTP-bound form of RalA and not to a mutant Ral with a point mutation in its putative effector domain. In addition to a Ral-binding domain, RalBP1 also contains a Rho-GTPase-activating protein domain that interacts preferentially with Rho family member CDC42. Since CDC42 has been implicated in bud site selection in S. cerevisiae and filopodium formation in mammalian cells, Ral may function to modulate the actin cytoskeleton through its interactions with RalBP1.


2002 ◽  
Vol 70 (1) ◽  
pp. 360-367 ◽  
Author(s):  
Rebecca Krall ◽  
Jianjun Sun ◽  
Kristin J. Pederson ◽  
Joseph T. Barbieri

ABSTRACT ExoS is a bifunctional type III cytotoxin secreted by Pseudomonas aeruginosa, which comprises a C-terminal ADP ribosyltransferase domain and an N-terminal Rho GTPase-activating protein (GAP) domain. In vitro, ExoS is a Rho GAP for Rho, Rac, and Cdc42; however, the in vivo modulation of Rho GTPases has not been addressed. Using a transient transfection system and delivery by P. aeruginosa, interactions were examined between the Rho GAP domain of ExoS and Rho GTPases in CHO cells. Rho GTPases were expressed as green fluorescent protein (GFP) fusion proteins to facilitate quantitation. GFP fusions of wild-type and dominant active Rho, Rac, and Cdc42 localized to discrete regions of CHO cells and appeared functional based upon their modulation of the actin cytoskeleton. Coexpression of the Rho GAP domain of ExoS changed the intracellular distribution of GFP-Rac and GFP-Cdc42 from a predominately membrane location to a cytosolic location. Coexpression of the Rho GAP domain of ExoS did not change the distribution of GFP-Rho, which was primarily in the cytosol. Coexpression of dominant active Rac (DARac) and DACdc42 inhibited actin reorganization by the Rho GAP domain but did not maintain the formation of actin stress fibers, which indicated that Rho had been inactivated. Similar results were observed when ExoS was delivered into CHO cells by P. aeruginosa. These data indicate that in vivo the Rho GAP activity of ExoS stimulates the reorganization of the actin cytoskeleton by inhibition of Rac and Cdc42 and stimulates actin stress fiber formation by inhibition of Rho.


2012 ◽  
Vol 12 (2) ◽  
pp. 368-377 ◽  
Author(s):  
Ting Gong ◽  
Yuan Liao ◽  
Fei He ◽  
Yang Yang ◽  
Dan-Dan Yang ◽  
...  

ABSTRACT In the budding yeast Saccharomyces cerevisiae , Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4 Q131L mutant in an rdi1 Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3 Δ rho4 Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3 Δ rho4 Δ 61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S -transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3 Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1037 ◽  
Author(s):  
Cho ◽  
Kim ◽  
Baek ◽  
Kim ◽  
Lee

Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document