scholarly journals Overexpression of peroxisomal testis-specific 1 protein induces germ cell apoptosis and leads to infertility in male mice

2011 ◽  
Vol 22 (10) ◽  
pp. 1766-1779 ◽  
Author(s):  
Karina Kaczmarek ◽  
Maja Studencka ◽  
Andreas Meinhardt ◽  
Krzysztof Wieczerzak ◽  
Sven Thoms ◽  
...  

 Peroxisomal testis-specific 1 gene (Pxt1) is the only male germ cell–specific gene that encodes a peroxisomal protein known to date. To elucidate the role of Pxt1 in spermatogenesis, we generated transgenic mice expressing a c-MYC-PXT1 fusion protein under the control of the PGK2 promoter. Overexpression of Pxt1 resulted in induction of male germ cells’ apoptosis mainly in primary spermatocytes, finally leading to male infertility. This prompted us to analyze the proapoptotic character of mouse PXT1, which harbors a BH3-like domain in the N-terminal part. In different cell lines, the overexpression of PXT1 also resulted in a dramatic increase of apoptosis, whereas the deletion of the BH3-like domain significantly reduced cell death events, thereby confirming that the domain is functional and essential for the proapoptotic activity of PXT1. Moreover, we demonstrated that PXT1 interacts with apoptosis regulator BAT3, which, if overexpressed, can protect cells from the PXT1-induced apoptosis. The PXT1-BAT3 association leads to PXT1 relocation from the cytoplasm to the nucleus. In summary, we demonstrated that PXT1 induces apoptosis via the BH3-like domain and that this process is inhibited by BAT3.

2012 ◽  
Vol 150 (1-3) ◽  
pp. 137-146 ◽  
Author(s):  
Mohammad Ghasemzadeh-Hasankolai ◽  
Roozali Batavani ◽  
Mohamadreza Baghaban Eslaminejad ◽  
Mohammadali Sedighi-Gilani

Development ◽  
1998 ◽  
Vol 125 (6) ◽  
pp. 1103-1112 ◽  
Author(s):  
G.Q. Zhao ◽  
L. Liaw ◽  
B.L. Hogan

The murine Bmp8a and Bmp8b genes are tightly linked on mouse chromosome 4 and have similar expression during reproduction. Previous studies have shown that targeted mutagenesis of Bmp8b causes male infertility due to germ cell degeneration. To investigate the function of Bmp8a, we have inactivated the gene by homologous recombination. Heterozygous and homozygous Bmp8a mutants reveal normal embryonic and postnatal development. Despite high levels of Bmp8a expression in the deciduum, homozygous mutant females have normal fertility, suggesting that the gene is not essential for female reproduction. Bmp8a and Bmp8b are expressed in similar patterns in male germ cells. Unlike homozygous Bmp8btm1 mutants, homozygous Bmp8atm1 males do not show obvious germ cell defects during the initiation of spermatogenesis. However, germ cell degeneration is observed in 47% of adult homozygous Bmp8atm1 males, establishing a role of Bmp8a in the maintenance of spermatogenesis. A small proportion of the mating homozygous Bmp8atm1 males also show degeneration of the epididymal epithelium, indicating a novel role for BMPs in the control of epididymal function.


Reproduction ◽  
2017 ◽  
Vol 154 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Kasane Kishi ◽  
Aya Uchida ◽  
Hinako M Takase ◽  
Hitomi Suzuki ◽  
Masamichi Kurohmaru ◽  
...  

USP9X (ubiquitin-specific peptidase 9, X chromosome) is the mammalian orthologue of Drosophila deubiquitinase fat facets that was previously shown to regulate the maintenance of the germ cell lineage partially through stabilizing Vasa, one of the widely conserved factors crucial for gametogenesis. Here, we demonstrate that USP9X is expressed in the gonocytes and spermatogonia in mouse testes from newborn to adult stages. By using Vasa-Cre mice, germ cell-specific conditional deletion of Usp9x from the embryonic stage showed no abnormality in the developing testes by 1 week and no appreciable defects in the undifferentiated and differentiating spermatogonia at postnatal and adult stages. Interestingly, after 2 weeks, Usp9x-null spermatogenic cells underwent apoptotic cell death at the early spermatocyte stage, and then, caused subsequent aberrant spermiogenesis, which resulted in a complete infertility of Usp9x conditional knockout male mice. These data provide the first evidence of the crucial role of the spermatogonial USP9X during transition from the mitotic to meiotic phases and/or maintenance of early meiotic phase in Usp9x conditional knockout testes.


Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2466-2473 ◽  
Author(s):  
Benoit Souquet ◽  
Sophie Tourpin ◽  
Sébastien Messiaen ◽  
Delphine Moison ◽  
René Habert ◽  
...  

The mechanisms regulating the entry into meiosis in mammalian germ cells remain incompletely understood. We investigated the involvement of the TGF-β family members in fetal germ cell meiosis initiation. Nodal, a member of the TGF-β family, and its target genes are precociously expressed in embryonic gonads and show sexual dimorphism in favor of the developing testis. Nodal receptor genes, Acvr2a and Acvr2b, Alk4, and Tdgf1/Cripto, were identified in male germ cells. Nodal itself, Tdgf1, and Lefty1 and Lefty2 are targets of Nodal signaling and were all found specifically expressed in male germ cells. To elucidate the role of this signaling pathway, activin-like kinases that mediate TGF-β/Nodal/activin signaling were inhibited in 11.5 d postconception testis in organotypic culture. Activin-like kinases inhibition disrupted normal male germ cell development and induced germ cell entry into meiosis such as that observed in female germ cells at the equivalent stage. Interestingly Stra8, the gatekeeper of the mitotic/meiotic switch, was induced independently of any change of either Cyp26b1 or Fgf9 expression, the two genes currently identified as testicular meiotic inhibitors. On the other hand, recombinant Nodal significantly dampened Stra8 expression and germ cell meiosis in cultured 11.5 d postconception ovaries. Our results allowed us to propose for the first time an autocrine role of Nodal during the development of germ cells and indicate that members of the TGB-β family may reinforce the male fate and prevent meiosis in embryonic germ cells.


2006 ◽  
Vol 290 (6) ◽  
pp. E1145-E1154 ◽  
Author(s):  
Krista Erkkila ◽  
Sauli Kyttanen ◽  
Marten Wikstrom ◽  
Kimmo Taari ◽  
Amiya P. Sinha Hikim ◽  
...  

The understanding of testicular physiology, pathology, and male fertility issues requires knowledge of male germ cell death and energy production. Here, we induced human male germ cell apoptosis (detected by Southern blot analysis of DNA fragmentation, TUNEL, activation of caspases-3 and -9, and electron microscopy) by incubating seminiferous tubule segments under hormone- and serum-free conditions. Inhibitors of complexes I to IV of mitochondrial respiration, exposure to anoxia, and inhibition of F0F1-ATPase (with oligomycin) decreased the ATP levels (analyzed by HPLC) and suppressed apoptosis at 4 h. Uncoupler 2,4-dinitrophenol (DNP) and oligomycin combination also suppressed death at 4 h, as did the DNP alone. Inhibition of glycolysis by 2-deoxyglucose neither suppressed nor further induced apoptosis nor altered the antiapoptotic effects of the mitochondrial inhibitors. Furthermore, Fas system activation did not modify the effects of mitochondrial modulators. After 24 h, delayed male germ cell apoptosis was observed despite the presence of the mitochondrial inhibitors. We conclude that the mitochondrial ATP production machinery plays an important role in regulating in vitro-induced primary pathways of human male germ apoptosis. The ATP synthesized by the F0F1-ATPase seems to be the crucial death regulator, rather than any of the complexes (I-IV) alone, the functional electron transport chain, or the membrane potential. We also conclude that there seem to be secondary pathways of human testicular cell apoptosis that do not require mitochondrial ATP production. The present study emphasizes the role of the main catabolic pathways in the complex network of regulating events of male germ cell life and death.


2005 ◽  
Vol 171 (4) ◽  
pp. 651-661 ◽  
Author(s):  
Nisrine El Chami ◽  
Fouziha Ikhlef ◽  
Krisztian Kaszas ◽  
Sadok Yakoub ◽  
Eric Tabone ◽  
...  

The proto-oncoprotein Cbl is known to control several signaling processes. It is highly expressed in the testis, and because spermatogenesis is androgen dependent, we investigated the androgen dependency expression of Cbl through its testicular sublocalization and its expression levels in rats that were exposed to the antiandrogen flutamide or were hypophysectomized. We report the androgen dependency of Cbl as it localizes in pachytene spermatocytes during androgen-dependent stages, is down-regulated upon flutamide exposure, and is up-regulated with testosterone in hypophysectomized rats. Coculture experiments showed the key control exerted by the Sertoli cell on Cbl activity. As flutamide induces germ cell apoptosis, we investigate members of the Bcl-2 family upon flutamide exposure. We show that the proapoptotic Bcl-2 family member Bim mirrored Cbl expression through a posttranscriptional process. We also show that in Cbl knockout mouse testes, the imbalance between the high expression of Bim and Smac/Diablo and antiapoptotic factors such as cellular inhibitor of apoptosis 2 favors a survival process, which makes these mice unresponsive to androgen withdrawal and could explain their hypofertility.


2017 ◽  
Vol 8 (10) ◽  
pp. e3146-e3146 ◽  
Author(s):  
Qian Jiang ◽  
Fei Wang ◽  
Lili Shi ◽  
Xiang Zhao ◽  
Maolei Gong ◽  
...  

Abstract Mumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3. CXC chemokine receptor 3 (CXCR3), a functional receptor of CXCL10, is constitutively expressed in male germ cells. Neutralizing antibodies against CXCR3 and an inhibitor of caspase-3 activation significantly inhibited CXCL10-induced male germ cell apoptosis. Furthermore, the tumor necrosis factor-α (TNF-α) upregulated CXCL10 production in Sertoli cells after MuV infection. The knockout of either CXCL10 or TNF-α reduced germ cell apoptosis in the co-cultures of germ cells and Sertoli cells in response to MuV infection. Local injection of MuV into the testes of mice confirmed the involvement of CXCL10 in germ cell apoptosis in vivo. These results provide novel insights into MuV-induced germ cell apoptosis in the testis.


2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 365
Author(s):  
Carina Colturato-Kido ◽  
Rayssa M. Lopes ◽  
Hyllana C. D. Medeiros ◽  
Claudia A. Costa ◽  
Laura F. L. Prado-Souza ◽  
...  

Acute lymphoblastic leukemia (ALL) is an aggressive malignant disorder of lymphoid progenitor cells that affects children and adults. Despite the high cure rates, drug resistance still remains a significant clinical problem, which stimulates the development of new therapeutic strategies and drugs to improve the disease outcome. Antipsychotic phenothiazines have emerged as potential candidates to be repositioned as antitumor drugs. It was previously shown that the anti-histaminic phenothiazine derivative promethazine induced autophagy-associated cell death in chronic myeloid leukemia cells, although autophagy can act as a “double-edged sword” contributing to cell survival or cell death. Here we evaluated the role of autophagy in thioridazine (TR)-induced cell death in the human ALL model. TR induced apoptosis in ALL Jurkat cells and it was not cytotoxic to normal peripheral mononuclear blood cells. TR promoted the activation of caspase-8 and -3, which was associated with increased NOXA/MCL-1 ratio and autophagy triggering. AMPK/PI3K/AKT/mTOR and MAPK/ERK pathways are involved in TR-induced cell death. The inhibition of the autophagic process enhanced the cytotoxicity of TR in Jurkat cells, highlighting autophagy as a targetable process for drug development purposes in ALL.


Sign in / Sign up

Export Citation Format

Share Document