scholarly journals Kinesin molecular motor Eg5 functions during polypeptide synthesis

2011 ◽  
Vol 22 (18) ◽  
pp. 3420-3430 ◽  
Author(s):  
Kristen M. Bartoli ◽  
Jelena Jakovljevic ◽  
John L. Woolford ◽  
William S. Saunders

The kinesin-related molecular motor Eg5 plays roles in cell division, promoting spindle assembly. We show that during interphase Eg5 is associated with ribosomes and is required for optimal nascent polypeptide synthesis. When Eg5 was inhibited, ribosomes no longer bound to microtubules in vitro, ribosome transit rates slowed, and polysomes accumulated in intact cells, suggesting defects in elongation or termination during polypeptide synthesis. These results demonstrate that the molecular motor Eg5 associates with ribosomes and enhances the efficiency of translation.

2019 ◽  
Vol 8 (12) ◽  
pp. 2026
Author(s):  
Maciej Brązert ◽  
Wiesława Kranc ◽  
Błażej Chermuła ◽  
Katarzyna Kowalska ◽  
Maurycy Jankowski ◽  
...  

Granulosa cells (GCs) are a population of somatic cells whose role after ovulation is progesterone production. GCs were collected from patients undergoing controlled ovarian stimulation during an in vitro fertilization procedure, and they were maintained for 1, 7, 15, and 30 days of in vitro primary culture before collection for further gene expression analysis. A study of genes involved in the biological processes of interest was carried out using expression microarrays. To validate the obtained results, Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR) was performed. The direction of changes in the expression of the selected genes was confirmed in most of the examples. Six ontological groups (“cell cycle arrest”, “cell cycle process”, “mitotic spindle organization”, “mitotic spindle assembly checkpoint”, “mitotic spindle assembly”, and “mitotic spindle checkpoint”) were analyzed in this study. The results of the microarrays obtained by us allowed us to identify two groups of genes whose expressions were the most upregulated (FAM64A, ANLN, TOP2A, CTGF, CEP55, BIRC5, PRC1, DLGAP5, GAS6, and NDRG1) and the most downregulated (EREG, PID1, INHA, RHOU, CXCL8, SEPT6, EPGN, RDX, WNT5A, and EZH2) during the culture. The cellular ultrastructure showed the presence of structures characteristic of mitotic cell division: a centrosome surrounded by a pericentric matrix, a microtubule system, and a mitotic spindle connected to chromosomes. The main goal of the study was to identify the genes involved in mitotic division and to identify the cellular ultrastructure of GCs in a long-term in vitro culture. All of the genes in these groups were subjected to downstream analysis, and their function and relation to the ovarian environment are discussed. The obtained results suggest that long-term in vitro cultivation of GCs may lead to their differentiation toward another cell type, including cells with cancer-like characteristics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 339
Author(s):  
Surinder M. Soond ◽  
Lyudmila V. Savvateeva ◽  
Vladimir A. Makarov ◽  
Neonila V. Gorokhovets ◽  
Paul A. Townsend ◽  
...  

Certain lysosomal cathepsin proteins have come into focus as being good candidates for therapeutic targeting, based on them being over-expressed in a variety of cancers and based on their regulation of the apoptotic pathway. Here, we report novel findings that highlight the ability of cathepsin S expression to be up-regulated under Paclitaxel-stimulatory conditions in kidney cell lines and it being able to cleave the apoptotic p21 BAX protein in intact cells and in vitro. Consistent with this, we demonstrate that this effect can be abrogated in vitro and in mammalian cells under conditions that utilize dominant-inhibitory cathepsin S expression, cathepsin S expression-knockdown and through the activity of a novel peptide inhibitor, CS-PEP1. Moreover, we report a unique role for cathepsin S in that it can cleave a polyubiquitinated-BAX protein intermediate and is a step that may contribute to down-regulating post-translationally-modified levels of BAX protein. Finally, CS-PEP1 may possess promising activity as a potential anti-cancer therapeutic against chemotherapeutic-resistant Renal Clear Cell Carcinoma kidney cancer cells and for combined uses with therapeutics such as Paclitaxel.


1988 ◽  
Vol 252 (2) ◽  
pp. 607-615 ◽  
Author(s):  
J M Tavaré ◽  
R M Denton

1. A partially purified preparation of human placental insulin receptors was incubated with [gamma-32P]ATP in the presence or absence of insulin. The 32P-labelled insulin-receptor beta-subunits were then isolated, cleaved with trypsin followed by protease V8 and the [32P]phosphopeptides generated were analysed by thin layer electrophoresis and chromatography. This approach revealed that insulin stimulates autophosphorylation of the insulin-receptor beta-subunit in vitro on at least seven tyrosine residues distributed among three distinct domains. 2. One domain (domain 2), containing tyrosine residues 1146, 1150 and 1151 was the most rapidly phosphorylated and could be recovered as mono-, di- and triphosphorylated peptides cleaved by trypsin at Arg-1143 and either Lys-1153 or Lys-1156. Multiple phosphorylation of this domain appears to partially inhibit the cleavage at Lys-1153 by trypsin. 3. In a second domain (domain 3) containing two phosphorylated tyrosine residues at positions 1316 and 1322 the tyrosines were phosphorylated more slowly than those in domain 2. This domain is close to the C-terminus of the beta-subunit polypeptide chain. 4. At least two further tyrosine residues appeared to be phosphorylated after those in domains 2 and 3. These residues probably residue within a domain lying in close proximity to the inner face of the plasma membrane containing tyrosines 953, 960 and 972, but conclusive evidence is still required. 5. The two-dimensional thin-layer analysis employed in this study to investigate insulin-receptor phosphorylation has several advantages over previous methods based on reverse-phase chromatography. It allows greater resolution of 32P-labelled tryptic peptides and, when coupled to radioautography, is considerably more sensitive. The approach can be readily adapted to study phosphorylation of the insulin receptor within intact cells.


1992 ◽  
Vol 282 (3) ◽  
pp. 703-710 ◽  
Author(s):  
J P Hildebrandt ◽  
T J Shuttleworth

The generation of inositol phosphates upon muscarinic-receptor activation was studied in [3H]inositol-loaded exocrine cells from the nasal salt glands of the duck Anas platyrhynchos, and the metabolism of different inositol phosphates in vitro was studied in tissue homogenates, with particular reference to the possible interaction of changes in intracellular [Ca2+] ([Ca2+]i) with the metabolic processes. In intact cells, there was a rapid (within 15 s) generation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, followed by an accumulation of their breakdown products, Ins(1,3,4)P3 and inositol bis- and monophosphates. Ca(2+)-sensitivity of the Ins(1,4,5)P3 3-kinase was demonstrated in tissue homogenates, with the rate of phosphorylation increasing 2-fold at free Ca2+ concentrations greater than 1 microM. However, addition of calmodulin or the presence of the calmodulin inhibitor W-7 (up to 100 microM) had no effect. 3-Kinase activity increased proportionally with the initial Ins(1,4,5)P3 concentration up to 1 microM, but a 10-fold higher substrate concentration produced only a doubling in the phosphorylation rate. Ins(1,3,4,5)P4 was dephosphorylated to Ins(1,3,4)P3, which accumulated in the homogenate assays as well as in intact cells. Depending on its concentration, Ins(1,3,4)P3 was phosphorylated [in part to Ins(1,3,4,6)P4] or dephosphorylated. To investigate the Ca(2+)-sensitivity of the 3-kinase in intact cells, excess quin2 was used to buffer the receptor-mediated transient changes in [Ca2+]i in [3H]inositol-loaded cells. These experiments revealed that increasing [Ca2+]i from less than 100 to approx. 400 nM (i.e. within the physiological range) has no effect on the partitioning of Ins(1,4,5)P3 metabolism (phosphorylation versus dephosphorylation) and on the accumulation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4. This indicates that activation of the 3-kinase by physiologically relevant Ca2+ concentrations may not play a major role in the generation of Ins(1,3,4,5)P4 signals upon receptor activation in these cells. The latter are mainly achieved by the receptor-mediated increase in Ins(1,4,5)P3 in the cell and its phosphorylation by the 3-kinase in a substrate-concentration-dependent manner.


2014 ◽  
Vol 82 (7) ◽  
pp. 2890-2901 ◽  
Author(s):  
Marilena Gallotta ◽  
Giovanni Gancitano ◽  
Giampiero Pietrocola ◽  
Marirosa Mora ◽  
Alfredo Pezzicoli ◽  
...  

ABSTRACTGroup A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of thespy0269gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interactin vitrowith the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cellsin vitroand thatLactococcus lactisexpressing Spy0269 on its cell surface could adhere to mammalian cellsin vitroand to mice nasal mucosain vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (StreptococcuspyogenesAdhesion andDivision protein).


Sign in / Sign up

Export Citation Format

Share Document