scholarly journals The spindle checkpoint protein Mad2 regulates APC/C activity during prometaphase and metaphase of meiosis I in Saccharomyces cerevisiae

2011 ◽  
Vol 22 (16) ◽  
pp. 2848-2861 ◽  
Author(s):  
Dai Tsuchiya ◽  
Claire Gonzalez ◽  
Soni Lacefield

In many eukaryotes, disruption of the spindle checkpoint protein Mad2 results in an increase in meiosis I nondisjunction, suggesting that Mad2 has a conserved role in ensuring faithful chromosome segregation in meiosis. To characterize the meiotic function of Mad2, we analyzed individual budding yeast cells undergoing meiosis. We find that Mad2 sets the duration of meiosis I by regulating the activity of APCCdc20. In the absence of Mad2, most cells undergo both meiotic divisions, but securin, a substrate of the APC/C, is degraded prematurely, and prometaphase I/metaphase I is accelerated. Some mad2Δ cells have a misregulation of meiotic cell cycle events and undergo a single aberrant division in which sister chromatids separate. In these cells, both APCCdc20 and APCAma1 are prematurely active, and meiosis I and meiosis II events occur in a single meiotic division. We show that Mad2 indirectly regulates APCAma1 activity by decreasing APCCdc20 activity. We propose that Mad2 is an important meiotic cell cycle regulator that ensures the timely degradation of APC/C substrates and the proper orchestration of the meiotic divisions.

2008 ◽  
Vol 19 (3) ◽  
pp. 1199-1209 ◽  
Author(s):  
Brendan M. Kiburz ◽  
Angelika Amon ◽  
Adele L. Marston

Chromosome segregation must be executed accurately during both mitotic and meiotic cell divisions. Sgo1 plays a key role in ensuring faithful chromosome segregation in at least two ways. During meiosis this protein regulates the removal of cohesins, the proteins that hold sister chromatids together, from chromosomes. During mitosis, Sgo1 is required for sensing the absence of tension caused by sister kinetochores not being attached to microtubules emanating from opposite poles. Here we describe a differential requirement for Sgo1 in the segregation of homologous chromosomes and sister chromatids. Sgo1 plays only a minor role in segregating homologous chromosomes at meiosis I. In contrast, Sgo1 is important to bias sister kinetochores toward biorientation. We suggest that Sgo1 acts at sister kinetochores to promote their biorientation.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 577-587 ◽  
Author(s):  
Xuemei Zeng ◽  
William S Saunders

Abstract Meiotic cell division includes two separate and distinct types of chromosome segregation. In the first segregational event the sister chromatids remain attached at the centromere; in the second the chromatids are separated. The factors that control the order of chromosome segregation during meiosis have not yet been identified but are thought to be confined to the centromere region. We showed that the centromere protein Slk19p is required for the proper execution of meiosis in Saccharomyces cerevisiae. In its absence diploid cells skip meiosis I and execute meiosis II division. Inhibiting recombination does not correct this phenotype. Surprisingly, the initiation of recombination is apparently required for meiosis II division. Thus Slk19p appears to be part of the mechanism by which the centromere controls the order of meiotic divisions.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Michelle D Krawchuk ◽  
Wayne P Wahls

AbstractRecent evidence suggests that the position of reciprocal recombination events (crossovers) is important for the segregation of homologous chromosomes during meiosis I and sister chromatids during meiosis II. We developed genetic mapping functions that permit the simultaneous analysis of centromere-proximal crossover recombination and the type of segregation error leading to aneuploidy. The mapping functions were tested in a study of the rec8, rec10, and rec11 mutants of fission yeast. In each mutant we monitored each of the three chromosome pairs. Between 38 and 100% of the chromosome segregation errors in the rec8 mutants were due to meiosis I nondisjunction of homologous chromosomes. The remaining segregation errors were likely the result of precocious separation of sister chromatids, a previously described defect in the rec8 mutants. Between 47 and 100% of segregation errors in the rec10 and rec11 mutants were due to nondisjunction of sister chromatids during meiosis II. In addition, centromere-proximal recombination was reduced as much as 14-fold or more on chromosomes that had experienced nondisjunction. These results demonstrate the utility of the new mapping functions and support models in which sister chromatid cohesion and crossover position are important determinants for proper chromosome segregation in each meiotic division.


Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 475-485
Author(s):  
G Sharon ◽  
G Simchen

Abstract Normal meiosis consists of two consecutive cell divisions in which all the chromosomes behave in a concerted manner. Yeast cells homozygous for the mutation cdc5, however, may be directed through a single meiotic division of a novel type. Dyad analysis of a cdc5/cdc5 strain with centromere-linked markers on four different chromosomes has shown that, in these meioses, some chromosomes within a given cell segregate reductionally whereas others segregate equationally. The choice between the two types of segregation in these meioses is made individually by each chromosome pair. Different chromosome pairs exhibit different segregation tendencies. Similar results were obtained for cells homozygous for cdc14.


2015 ◽  
Vol 112 (36) ◽  
pp. 11252-11257 ◽  
Author(s):  
Mayuko Hara ◽  
Engin Özkan ◽  
Hongbin Sun ◽  
Hongtao Yu ◽  
Xuelian Luo

The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1–Mad2 core complex. In mitosis, kinetochore-bound Mad1–C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. Here, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2. Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2–binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2–C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2.


1999 ◽  
Vol 145 (5) ◽  
pp. 933-950 ◽  
Author(s):  
Iain D. Russell ◽  
Adam S. Grancell ◽  
Peter K. Sorger

Kinetochores are smaller and more accessible experimentally in budding yeast than in any other eukaryote. Believing that simple and complex kinetochores have important structural and functional properties in common, we characterized the structure of CBF3, the essential centromere-binding complex that initiates kinetochore formation in Saccharomyces cerevisiae. We find that the four subunits of CBF3 are multimeric in solution: p23Skp1 and p58Ctf13 form a heterodimer, and p64Cep3 and p110Ndc10 form homodimers. Subcomplexes involving p58 and each of the other CBF3 subunits can assemble in the absence of centromeric DNA. In these subcomplexes, p58 appears to function as a structural core mediating stable interactions among other CBF3 proteins. p58 has a short half-life in yeast, being subject to ubiquitin-dependent proteolysis, but we find that it is much more stable following association with p64. We propose that p23Skp1-p58-p64 complexes constitute the primary pool of active p58 in yeast cells. These complexes can either dissociate, reexposing p58 to the degradation pathway, or can bind to p110 and centromeric DNA, forming a functional CBF3 complex in which p58 is fully protected from degradation. This pathway may constitute an editing mechanism preventing the formation of ectopic kinetochores and ensuring the fidelity of chromosome segregation.


2011 ◽  
Vol 22 (14) ◽  
pp. 2448-2457 ◽  
Author(s):  
Erin L. Barnhart ◽  
Russell K. Dorer ◽  
Andrew W. Murray ◽  
Scott C. Schuyler

Chromosome segregation depends on the spindle checkpoint, which delays anaphase until all chromosomes have bound microtubules and have been placed under tension. The Mad1–Mad2 complex is an essential component of the checkpoint. We studied the consequences of removing one copy of MAD2 in diploid cells of the budding yeast, Saccharomyces cerevisiae. Compared to MAD2/MAD2 cells, MAD2/mad2Δ heterozygotes show increased chromosome loss and have different responses to two insults that activate the spindle checkpoint: MAD2/mad2Δ cells respond normally to antimicrotubule drugs but cannot respond to chromosomes that lack tension between sister chromatids. In MAD2/mad2Δ cells with normal sister chromatid cohesion, removing one copy of MAD1 restores the checkpoint and returns chromosome loss to wild-type levels. We conclude that cells need the normal Mad2:Mad1 ratio to respond to chromosomes that are not under tension.


1999 ◽  
Vol 145 (3) ◽  
pp. 425-435 ◽  
Author(s):  
Hong-Guo Yu ◽  
Michael G. Muszynski ◽  
R. Kelly Dawe

We have identified a maize homologue of yeast MAD2, an essential component in the spindle checkpoint pathway that ensures metaphase is complete before anaphase begins. Combined immunolocalization of MAD2 and a recently cloned maize CENPC homologue indicates that MAD2 localizes to an outer domain of the prometaphase kinetochore. MAD2 staining was primarily observed on mitotic kinetochores that lacked attached microtubules; i.e., at prometaphase or when the microtubules were depolymerized with oryzalin. In contrast, the loss of MAD2 staining in meiosis was not correlated with initial microtubule attachment but was correlated with a measure of tension: the distance between homologous or sister kinetochores (in meiosis I and II, respectively). Further, the tension-sensitive 3F3/2 phosphoepitope colocalized, and was lost concomitantly, with MAD2 staining at the meiotic kinetochore. The mechanism of spindle assembly (discussed here with respect to maize mitosis and meiosis) is likely to affect the relative contributions of attachment and tension. We support the idea that MAD2 is attachment-sensitive and that tension stabilizes microtubule attachments.


2002 ◽  
Vol 157 (7) ◽  
pp. 1125-1137 ◽  
Author(s):  
Anja Hagting ◽  
Nicole den Elzen ◽  
Hartmut C. Vodermaier ◽  
Irene C. Waizenegger ◽  
Jan-Michael Peters ◽  
...  

Progress through mitosis is controlled by the sequential destruction of key regulators including the mitotic cyclins and securin, an inhibitor of anaphase whose destruction is required for sister chromatid separation. Here we have used live cell imaging to determine the exact time when human securin is degraded in mitosis. We show that the timing of securin destruction is set by the spindle checkpoint; securin destruction begins at metaphase once the checkpoint is satisfied. Furthermore, reimposing the checkpoint rapidly inactivates securin destruction. Thus, securin and cyclin B1 destruction have very similar properties. Moreover, we find that both cyclin B1 and securin have to be degraded before sister chromatids can separate. A mutant form of securin that lacks its destruction box (D-box) is still degraded in mitosis, but now this is in anaphase. This destruction requires a KEN box in the NH2 terminus of securin and may indicate the time in mitosis when ubiquitination switches from APCCdc20 to APCCdh1. Lastly, a D-box mutant of securin that cannot be degraded in metaphase inhibits sister chromatid separation, generating a cut phenotype where one cell can inherit both copies of the genome. Thus, defects in securin destruction alter chromosome segregation and may be relevant to the development of aneuploidy in cancer.


Sign in / Sign up

Export Citation Format

Share Document