scholarly journals The apoptotic engulfment protein Ced-6 participates in clathrin-mediated yolk uptake in Drosophila egg chambers

2012 ◽  
Vol 23 (9) ◽  
pp. 1742-1764 ◽  
Author(s):  
Anupma Jha ◽  
Simon C. Watkins ◽  
Linton M. Traub

Clathrin-mediated endocytosis and phagocytosis are both selective surface internalization processes but have little known mechanistic similarity or interdependence. Here we show that the phosphotyrosine-binding (PTB) domain protein Ced-6, a well-established phagocytosis component that operates as a transducer of so-called “eat-me” signals during engulfment of apoptotic cells and microorganisms, is expressed in the female Drosophila germline and that Ced-6 expression correlates with ovarian follicle development. Ced-6 exhibits all the known biochemical properties of a clathrin-associated sorting protein, yet ced-6–null flies are semifertile despite massive accumulation of soluble yolk precursors in the hemolymph. This is because redundant sorting signals within the cytosolic domain of the Drosophila vitellogenin receptor Yolkless, a low density lipoprotein receptor superfamily member, occur; a functional atypical dileucine signal binds to the endocytic AP-2 clathrin adaptor directly. Nonetheless, the Ced-6 PTB domain specifically recognizes the noncanonical Yolkless FXNPXA sorting sequence and in HeLa cells promotes the rapid, clathrin-dependent uptake of a Yolkless chimera lacking the distal dileucine signal. Ced-6 thus operates in vivo as a clathrin adaptor. Because the human Ced-6 orthologue GULP similarly binds to clathrin machinery, localizes to cell surface clathrin-coated structures, and is enriched in placental clathrin-coated vesicles, new possibilities for Ced-6/Gulp operation during phagocytosis must be considered.

2017 ◽  
Vol 474 (18) ◽  
pp. 3137-3165 ◽  
Author(s):  
Jessica Santana ◽  
María-Paz Marzolo

Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Miao Wang ◽  
Jane Stubbe ◽  
Eric Lee ◽  
Wenliang Song ◽  
Emanuela Ricciotti ◽  
...  

Microsomal (m) prostaglandin (PG) E 2 synthase(S)-1, an enzyme that catalyzes the isomerization of the cyclooxygenase (COX) product, PGH 2 , into PGE 2 , is a major source of PGE 2 in vivo . mPGES-1 deletion in mice was found to modulate experimentally evoked pain and inflammation and atherogenesis is retarded in mPGES-1 knockout (KO) mice. The impact of mPGES-1 deletion on formation of angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) was studied in mice lacking the low density lipoprotein receptor (LDLR −/− ). AngII infusion increased aortic macrophage recruitment and nitrotyrosine staining while upregulating both mPGES-1 and COX-2 and urinary excretion of the major metabolite of PGE 2 (PGE-M). Deletion of mPGES-1 decreased both the incidence and severity of AAA and depressed excretion of both PGE-M and 8, 12-iso-iPF 2a -VI, which reflects lipid peroxidation in vivo . While Ang II infusion augmented prostaglandin biosynthesis, deletion of mPGES-1 resulted in rediversion to PGD 2 , reflected by its major urinary metabolite. However, deletion of the PGD 2 receptor, DP1, did not affect AAA in Ang II infused LDLR −/− mice. These observations indicate that deletion of mPGES-1 protects against AAA formation by AngII in hyperlipidemic mice, perhaps by decreasing oxidative stress. Inhibition of mPGES-1 may represent an effective treatment to limit aneurysm occurrence and expansion.


FEBS Letters ◽  
1986 ◽  
Vol 196 (1) ◽  
pp. 87-90 ◽  
Author(s):  
Ralph V. Clayman ◽  
Lyman E. Bilhartz ◽  
David K. Spady ◽  
L.Maximilian Buja ◽  
John M. Dietschy

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 555-560 ◽  
Author(s):  
Masaaki Narita ◽  
Amy E. Rudolph ◽  
Joseph P. Miletich ◽  
Alan L. Schwartz

Abstract Blood coagulation factor X plays a pivotal role in the clotting cascade. When administered intravenously to mice, the majority of activated factor X (factor Xa) binds to α2-macroglobulin (α2M) and is rapidly cleared from the circulation into liver. We show here that the low-density lipoprotein receptor-related protein (LRP) is responsible for factor Xa catabolism in vivo. Mice overexpressing a 39-kD receptor-associated protein that binds to LRP and inhibits its ligand binding activity displayed dramatically prolonged plasma clearance of 125I-factor Xa. Preadministration of α2M-proteinase complexes (α2M*) also diminished the plasma clearance of125I-factor Xa in a dose-dependent fashion. The clearance of preformed complexes of 125I-factor Xa and α2M was similar to that of 125I-factor Xa alone and was also inhibited by mice overexpressing a 39-kD receptor-associated protein. These results thus suggest that, in vivo, factor Xa is metabolized via LRP after complex formation with α2M.


2015 ◽  
Vol 472 (3) ◽  
pp. 275-286 ◽  
Author(s):  
Vikram R. Shende ◽  
Amar Bahadur Singh ◽  
Jingwen Liu

PPARδ activation beneficially regulates lipid metabolism. We have now identified a novel function of PPARδ that increases LDL receptor gene transcription in hepatic cells in vitro and in vivo through direct binding to a PPRE motif on LDLR promoter.


Sign in / Sign up

Export Citation Format

Share Document