scholarly journals A short carboxyl-terminal tail is required for single-stranded DNA binding, higher-order structural organization, and stability of the mitochondrial single-stranded annealing protein Mgm101

2013 ◽  
Vol 24 (10) ◽  
pp. 1507-1518 ◽  
Author(s):  
MacMillan Mbantenkhu ◽  
Sara Wierzbicki ◽  
Xiaowen Wang ◽  
Shangdong Guo ◽  
Stephan Wilkens ◽  
...  

Mgm101 is a Rad52-type single-stranded annealing protein (SSAP) required for mitochondrial DNA (mtDNA) repair and maintenance. Structurally, Mgm101 forms large oligomeric rings. Here we determine the function(s) of a 32–amino acid carboxyl-terminal tail (Mgm101238–269) conserved in the Mgm101 family of proteins. Mutagenic analysis shows that Lys-253, Trp-257, Arg-259, and Tyr-268 are essential for mtDNA maintenance. Mutations in Lys-251, Arg-252, Lys-260, and Tyr-266 affect mtDNA stability at 37°C and under oxidative stress. The Y268A mutation severely affects single-stranded DNA (ssDNA) binding without altering the ring structure. Mutations in the Lys-251–Arg-252–Lys-253 positive triad also affect ssDNA binding. Moreover, the C-tail alone is sufficient to mediate ssDNA binding. Finally, we find that the W257A and R259A mutations dramatically affect the conformation and oligomeric state of Mgm101. These structural alterations correlate with protein degradation in vivo. The data thus indicate that the C-tail of Mgm101, likely displayed on the ring surface, is required for ssDNA binding, higher-order structural organization, and protein stability. We speculate that an initial electrostatic and base-stacking interaction with ssDNA could remodel ring organization. This may facilitate the formation of nucleoprotein filaments competent for mtDNA repair. These findings could have broad implications for understanding how SSAPs promote DNA repair and genome maintenance.

Genetics ◽  
1997 ◽  
Vol 145 (4) ◽  
pp. 891-902 ◽  
Author(s):  
Hina S Maniar ◽  
Richa Wilson ◽  
Steven J Brill

Replication Protein-A, the eukaryotic SSB, consists of a large subunit (RPA1) with strong ssDNA binding activity and two smaller subunits (RPA2 and 3) that may cooperate with RPA1 to bind ssDNA in a higher-order mode. To determine the in vivo function of the two smaller subunits and the potential role of higher-order ssDNA binding, we isolated an assortment of heat-lethal mutations in the genes encoding RPA2 and RPA3. At the permissive temperature, the mutants show a range of effects on DNA replication fidelity and sensitivities to UV and MMS. At the nonpermissive temperature, four out of five RPA2 mutants show a fast-stop DNA synthesis phenotype typical of a replication fork block. In contrast, the fifth RPA2 mutant and all RPA3 mutants are able to complete at least one round of DNA replication at the nonpermissive temperature. The effect of these mutations on the stability of the RPA complex was tested using a coprecipitation assay. At the nonpermissive temperature, we find that RPA1 and RPA2 are dissociated in the fast-stop mutants, but not in the slow-stop mutants. Thus, replication fork movement in vivo requires the association of at least two subunits of RPA. This result is consistent with the hypothesis that RPA functions in vivo by binding ssDNA in a higher-order mode.


2020 ◽  
Author(s):  
Chaoyou Xue ◽  
Lucia Molnarova ◽  
Justin B Steinfeld ◽  
Weixing Zhao ◽  
Chujian Ma ◽  
...  

Abstract RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51–ssDNA filaments. RECQ5 interacts with RAD51 through protein–protein contacts, and disruption of this interface through a RECQ5–F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51–K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51–I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.


2017 ◽  
Author(s):  
Nicholas M. Andis ◽  
Christopher W. Sausen ◽  
Ashna Alladin ◽  
Matthew L. Bochman

ABSTRACTPIF1 family helicases are conserved from bacteria to man. With the exception of the well-studied yeast PIF1 helicases (e.g., ScPif1 and ScRrm3), however, very little is known about how these enzymes help maintain genome stability. Indeed, we lack a basic understanding of the protein domains found N- and C-terminal to the characteristic central PIF1 helicase domain in these proteins. Here, using chimeric constructs, we show that the ScPif1 and ScRrm3 helicase domains are interchangeable and that the N-terminus of ScRrm3 is important for its functionin vivo. This suggests that PIF1 family helicases evolved functional modules fused to a generic motor domain. To investigate this hypothesis, we characterized the biochemical activities of the PIF1 helicase from the thermophilic bacteriumThermotoga elfii(TePif1), which contains a C-terminal WYL domain of unknown function. Like helicases from other thermophiles, recombinant TePif1 was easily prepared, thermostablein vitro, and displayed activities similar to its eukaryotic homologs. We also found that the WYL domain was necessary for high-affinity single-stranded DNA (ssDNA) binding and affected both ATPase and helicase activities. Deleting the WYL domain from TePif1 or mutating conserved residues in the predicted ssDNA binding site uncoupled ATPase activity and DNA unwinding, leading to higher rates of ATP hydrolysis but less efficient DNA helicase activity. Our findings suggest that the domains of unknown function found in eukaryotic PIF1 helicases may also confer functional specificity and additional activities to these enzymes, which should be investigated in future work.


2021 ◽  
Vol 22 (11) ◽  
pp. 5871
Author(s):  
Almerinda Di Venere ◽  
Eleonora Nicolai ◽  
Velia Minicozzi ◽  
Anna Maria Caccuri ◽  
Luisa Di Paola ◽  
...  

TNF Receptor Associated Factor 2 (TRAF2) is a trimeric protein that belongs to the TNF receptor associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding and for its interaction with other proteins involved in the TNFR signaling. The monomer-trimer equilibrium of a C- terminal domain truncated form of TRAF2 (TRAF2-C), plays also a relevant role in binding the membrane, causing inward vesiculation. In this study, we have investigated the conformational dynamics of TRAF2-C through circular dichroism, fluorescence, and dynamic light scattering, performing temperature-dependent measurements. The data indicate that the protein retains its oligomeric state and most of its secondary structure, while displaying a significative increase in the heterogeneity of the tyrosines signal, increasing the temperature from ≈15 to ≈35 °C. The peculiar crowding of tyrosine residues (12 out of 18) at the three subunit interfaces and the strong dependence on the trimer concentration indicate that such conformational changes mainly involve the contact areas between each pair of monomers, affecting the oligomeric state. Molecular dynamic simulations in this temperature range suggest that the interfaces heterogeneity is an intrinsic property of the trimer that arises from the continuous, asymmetric approaching and distancing of its subunits. Such dynamics affect the results of molecular docking on the external protein surface using receptor peptides, indicating that the TRAF2-receptor interaction in the solution might not involve three subunits at the same time, as suggested by the static analysis obtainable from the crystal structure. These findings shed new light on the role that the TRAF2 oligomeric state might have in regulating the protein binding activity in vivo.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 515-525 ◽  
Author(s):  
Allison P Davis ◽  
Lorraine S Symington

Abstract The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.


2002 ◽  
Vol 1 (3) ◽  
pp. 448-457 ◽  
Author(s):  
Toshimitsu Takagi ◽  
Eun-Jung Cho ◽  
Rozmin T. K. Janoo ◽  
Vladimir Polodny ◽  
Yasutaka Takase ◽  
...  

ABSTRACT The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5′-triphosphatase (RTPase) and GTP::mRNA guanylyltransferase (GTase). The GTase subunit (Ceg1) binds to the phosphorylated carboxyl-terminal domain of the largest subunit (CTD-P) of RNA polymerase II (pol II), coupling capping with transcription. Ceg1 bound to the CTD-P is inactive unless allosterically activated by interaction with the RTPase subunit (Cet1). For purposes of comparison, we characterize here the related GTases and RTPases from the yeasts Schizosaccharomyces pombe and Candida albicans. Surprisingly, the S. pombe capping enzyme subunits do not interact with each other. Both can independently interact with CTD-P of pol II, and the GTase is not repressed by CTD-P binding. The S. pombe RTPase gene (pct1 +) is essential for viability. Pct1 can replace the S. cerevisiae RTPase when GTase activity is supplied by the S. pombe or mouse enzymes but not by the S. cerevisiae GTase. The C. albicans capping enzyme subunits do interact with each other. However, this interaction is not essential in vivo. Our results reveal an unexpected diversity among the fungal capping machineries.


1999 ◽  
Vol 19 (6) ◽  
pp. 4143-4152 ◽  
Author(s):  
Julie Parenteau ◽  
Raymund J. Wellinger

ABSTRACT The Saccharomyces cerevisiae RAD27 gene encodes the yeast homologue of the mammalian FEN-1 nuclease, a protein that is thought to be involved in the processing of Okazaki fragments during DNA lagging-strand synthesis. One of the predicted DNA lesions occurring in rad27 strains is the presence of single-stranded DNA of the template strand for lagging-strand synthesis. We examined this prediction by analyzing the terminal DNA structures generated during telomere replication in rad27strains. The lengths of the telomeric repeat tracts were found to be destabilized in rad27 strains, indicating that naturally occurring direct repeats are subject to tract expansions and contractions in such strains. Furthermore, abnormally high levels of single-stranded DNA of the templating strand for lagging-strand synthesis were observed in rad27 cells. Overexpression of Dna2p in wild-type cells also yielded single-stranded DNA regions on telomeric DNA and caused a cell growth arrest phenotype virtually identical to that seen for rad27 cells grown at the restrictive temperature. Furthermore, overexpression of the yeast exonuclease Exo1p alleviated the growth arrest induced by both conditions, overexpression of Dna2p and incubation of rad27cells at 37°C. However, the telomere heterogeneity and the appearance of single-stranded DNA are not prevented by the overexpression of Exo1p in these strains, suggesting that this nuclease is not simply redundant with Rad27p. Our data thus provide in vivo evidence for the types of DNA lesions predicted to occur when lagging-strand synthesis is deficient and suggest that Dna2p and Rad27p collaborate in the processing of Okazaki fragments.


1973 ◽  
Vol 51 (12) ◽  
pp. 1588-1597 ◽  
Author(s):  
David T. Denhardt ◽  
Makoto Iwaya ◽  
Grant McFadden ◽  
Gerald Schochetman

Evidence is presented that in Escherichia coli made permeable to nucleotides by exposure to toluene, the synthesis of a DNA chain complementary to the infecting single-stranded DNA of bacteriophage [Formula: see text] requires ATP as well as the four deoxyribonucleoside triphosphates. This synthesis results in the formation of the parental double-stranded replicative-form (RF) molecule. The ATP is not required simply to prevent degradation of the ribonucleoside or deoxyribonucleoside triphosphates; it can be partially substituted for by other ribonucleoside triphosphates.No single one of the known E. coli DNA polymerases appears to be uniquely responsible in vivo for the formation of the parental RF. Since [Formula: see text] replicates well in strains lacking all, or almost all, of the in-vitro activities of DNA polymerases I and II, neither of these two enzymes would seem essential; and in a temperature-sensitive E. coli mutant (dnaEts) deficient in DNA polmerase-I activity and possessing a temperature-sensitive DNA polymerase III, the viral single-stranded DNA is efficiently incorporated into an RF molecule at the restrictive temperature. In contrast, both RF replication and progeny single-stranded DNA synthesis are dependent upon DNA polymerase III activity.


Sign in / Sign up

Export Citation Format

Share Document