scholarly journals Minus end–directed motor KIFC3 suppresses E-cadherin degradation by recruiting USP47 to adherens junctions

2014 ◽  
Vol 25 (24) ◽  
pp. 3851-3860 ◽  
Author(s):  
Kyoko Sako-Kubota ◽  
Nobutoshi Tanaka ◽  
Shigenori Nagae ◽  
Wenxiang Meng ◽  
Masatoshi Takeichi

The adherens junction (AJ) plays a crucial role in maintaining cell–cell adhesion in epithelial tissues. Previous studies show that KIFC3, a minus end–directed kinesin motor, moves into AJs via microtubules that grow from clusters of CAMSAP3 (also known as Nezha), a protein that binds microtubule minus ends. The function of junction-associated KIFC3, however, remains to be elucidated. Here we find that KIFC3 binds the ubiquitin-specific protease USP47, a protease that removes ubiquitin chains from substrates and hence inhibits proteasome-mediated proteolysis, and recruits it to AJs. Depletion of KIFC3 or USP47 promotes cleavage of E-cadherin at a juxtamembrane region of the cytoplasmic domain, resulting in the production of a 90-kDa fragment and the internalization of E-cadherin. This cleavage depends on the E3 ubiquitin protein ligase Hakai and is inhibited by proteasome inhibitors. E-cadherin ubiquitination consistently increases after depletion of KIFC3 or USP47. These findings suggest that KIFC3 suppresses the ubiquitination and resultant degradation of E-cadherin by recruiting USP47 to AJs, a process that may be involved in maintaining stable cell–cell adhesion in epithelial sheets.

2019 ◽  
Vol 20 (14) ◽  
pp. 3404 ◽  
Author(s):  
Andrea Dalle Vedove ◽  
Federico Falchi ◽  
Stefano Donini ◽  
Aurelie Dobric ◽  
Sebastien Germain ◽  
...  

Cadherins are a large family of transmembrane calcium-dependent cell adhesion proteins that orchestrate adherens junction formation and are crucially involved in tissue morphogenesis. Due to their important role in cancer development and metastasis, cadherins can be considered attractive targets for drug discovery. A recent crystal structure of the complex of a cadherin extracellular portion and a small molecule inhibitor allowed the identification of a druggable interface, thus providing a viable strategy for the design of cadherin dimerization modulators. Here, we report on a structure-based virtual screening approach that led to the identification of efficient and selective modulators of E-cadherin-mediated cell–cell adhesion. Of all the putative inhibitors that were identified and experimentally tested by cell adhesion assays using human pancreatic tumor BxPC-3 cells expressing both E-cadherin and P-cadherin, two compounds turned out to be effective in inhibiting stable cell–cell adhesion at micromolar concentrations. Moreover, at the same concentrations, one of them also showed anti-invasive properties in cell invasion assays. These results will allow further development of novel and selective cadherin-mediated cell–cell adhesion modulators for the treatment of a variety of cadherin-expressing solid tumors and for improving the efficiency of drug delivery across biological barriers.


2010 ◽  
Vol 30 (13) ◽  
pp. 3262-3274 ◽  
Author(s):  
Oxana M. Tsygankova ◽  
Changqing Ma ◽  
Waixing Tang ◽  
Christopher Korch ◽  
Michael D. Feldman ◽  
...  

ABSTRACT Rap1GAP expression is decreased in human tumors. The significance of its downregulation is unknown. We show that Rap1GAP expression is decreased in primary colorectal carcinomas. To elucidate the advantages conferred on tumor cells by loss of Rap1GAP, Rap1GAP expression was silenced in human colon carcinoma cells. Suppressing Rap1GAP induced profound alterations in cell adhesion. Rap1GAP-depleted cells exhibited defects in cell/cell adhesion that included an aberrant distribution of adherens junction proteins. Depletion of Rap1GAP enhanced adhesion and spreading on collagen. Silencing of Rap expression normalized spreading and restored E-cadherin, β-catenin, and p120-catenin to cell/cell contacts, indicating that unrestrained Rap activity underlies the alterations in cell adhesion. The defects in adherens junction protein distribution required integrin signaling as E-cadherin and p120-catenin were restored at cell/cell contacts when cells were plated on poly-l-lysine. Unexpectedly, Src activity was increased in Rap1GAP-depleted cells. Inhibition of Src impaired spreading and restored E-cadherin at cell/cell contacts. These findings provide the first evidence that Rap1GAP contributes to cell/cell adhesion and highlight a role for Rap1GAP in regulating cell/matrix and cell/cell adhesion. The frequent downregulation of Rap1GAP in epithelial tumors where alterations in cell/cell and cell/matrix adhesion are early steps in tumor dissemination supports a role for Rap1GAP depletion in tumor progression.


2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 1-17
Author(s):  
Sarah Alsharif ◽  
Pooja Sharma ◽  
Karina Bursch ◽  
Rachel Milliken ◽  
Van Lam ◽  
...  

1999 ◽  
Vol 19 (5) ◽  
pp. 3614-3623 ◽  
Author(s):  
Juliet M. Daniel ◽  
Albert B. Reynolds

ABSTRACT p120 ctn is an Armadillo repeat domain protein with structural similarity to the cell adhesion cofactors β-catenin and plakoglobin. All three proteins interact directly with the cytoplasmic domain of the transmembrane cell adhesion molecule E-cadherin; β-catenin and plakoglobin bind a carboxy-terminal region in a mutually exclusive manner, while p120 binds the juxtamembrane region. Unlike β-catenin and plakoglobin, p120 does not interact with α-catenin, the tumor suppressor adenomatous polyposis coli (APC), or the transcription factor Lef-1, suggesting that it has unique binding partners and plays a distinct role in the cadherin-catenin complex. Using p120 as bait, we conducted a yeast two-hybrid screen and identified a novel transcription factor which we named Kaiso. Kaiso’s deduced amino acid sequence revealed an amino-terminal BTB/POZ protein-protein interaction domain and three carboxy-terminal zinc fingers of the C2H2 DNA-binding type. Kaiso thus belongs to a rapidly growing family of POZ-ZF transcription factors that include the Drosophila developmental regulators Tramtrak and Bric à brac, and the human oncoproteins BCL-6 and PLZF, which are causally linked to non-Hodgkins’ lymphoma and acute promyelocytic leukemia, respectively. Monoclonal antibodies to Kaiso were generated and used to immunolocalize the protein and confirm the specificity of the p120-Kaiso interaction in mammalian cells. Kaiso specifically coprecipitated with a variety of p120-specific monoclonal antibodies but not with antibodies to α- or β-catenin, E-cadherin, or APC. Like other POZ-ZF proteins, Kaiso localized to the nucleus and was associated with specific nuclear dots. Yeast two-hybrid interaction assays mapped the binding domains to Arm repeats 1 to 7 of p120 and the carboxy-terminal 200 amino acids of Kaiso. In addition, Kaiso homodimerized via its POZ domain but it did not heterodimerize with BCL-6, which heterodimerizes with PLZF. The involvement of POZ-ZF proteins in development and cancer makes Kaiso an interesting candidate for a downstream effector of cadherin and/or p120 signaling.


2017 ◽  
Vol 114 (29) ◽  
pp. E5835-E5844 ◽  
Author(s):  
Caitlin Collins ◽  
Aleksandra K. Denisin ◽  
Beth L. Pruitt ◽  
W. James Nelson

Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion.


2003 ◽  
Vol 160 (3) ◽  
pp. 433-449 ◽  
Author(s):  
Steven H. Myster ◽  
Robert Cavallo ◽  
Charles T. Anderson ◽  
Donald T. Fox ◽  
Mark Peifer

Cadherin–catenin complexes, localized to adherens junctions, are essential for cell–cell adhesion. One means of regulating adhesion is through the juxtamembrane domain of the cadherin cytoplasmic tail. This region is the binding site for p120, leading to the hypothesis that p120 is a key regulator of cell adhesion. p120 has also been suggested to regulate the GTPase Rho and to regulate transcription via its binding partner Kaiso. To test these hypothesized functions, we turned to Drosophila, which has only a single p120 family member. It localizes to adherens junctions and binds the juxtamembrane region of DE-cadherin (DE-cad). We generated null alleles of p120 and found that mutants are viable and fertile and have no substantial changes in junction structure or function. However, p120 mutations strongly enhance mutations in the genes encoding DE-cadherin or Armadillo, the β-catenin homologue. Finally, we examined the localization of p120 during embryogenesis. p120 localizes to adherens junctions, but its localization there is less universal than that of core adherens junction proteins. Together, these data suggest that p120 is an important positive modulator of adhesion but that it is not an essential core component of adherens junctions.


2007 ◽  
Vol 178 (2) ◽  
pp. 323-335 ◽  
Author(s):  
Lene N. Nejsum ◽  
W. James Nelson

Mechanisms involved in maintaining plasma membrane domains in fully polarized epithelial cells are known, but when and how directed protein sorting and trafficking occur to initiate cell surface polarity are not. We tested whether establishment of the basolateral membrane domain and E-cadherin–mediated epithelial cell–cell adhesion are mechanistically linked. We show that the basolateral membrane aquaporin (AQP)-3, but not the equivalent apical membrane AQP5, is delivered in post-Golgi structures directly to forming cell–cell contacts where it co-accumulates precisely with E-cadherin. Functional disruption of individual components of a putative lateral targeting patch (e.g., microtubules, the exocyst, and soluble N-ethylmaleimide–sensitive factor attachment protein receptors) did not inhibit cell–cell adhesion or colocalization of the other components with E-cadherin, but each blocked AQP3 delivery to forming cell–cell contacts. Thus, components of the lateral targeting patch localize independently of each other to cell–cell contacts but collectively function as a holocomplex to specify basolateral vesicle delivery to nascent cell–cell contacts and immediately initiate cell surface polarity.


Sign in / Sign up

Export Citation Format

Share Document