scholarly journals Single-cell phenomics in budding yeast

2015 ◽  
Vol 26 (22) ◽  
pp. 3920-3925 ◽  
Author(s):  
Yoshikazu Ohya ◽  
Yoshitaka Kimori ◽  
Hiroki Okada ◽  
Shinsuke Ohnuki

The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast.

2005 ◽  
Vol 33 (5) ◽  
pp. 1182-1185 ◽  
Author(s):  
J. Garbarino ◽  
S.L. Sturley

Fatty acids and sterols are vital components of all eukaryotic cells. Both are used as building blocks for numerous cellular processes such as membrane biosynthesis or hormone production (sterols). Furthermore, these compounds elicit a variety of effects intracellularly as they can act as signalling molecules and regulate gene expression. The metabolism of fatty acids and sterols represents a very intricate network of pathways that are regulated in a precise manner in order to maintain lipid homoeostasis within a cell. Using the budding yeast Saccharomyces cerevisiae as a model system, we touch upon some of the aspects of achieving and maintaining this lipid homoeostasis.


2019 ◽  
Vol 9 (5) ◽  
pp. 297
Author(s):  
Shaoyu Wang

Background: Discovery of bioactive substances contained in functional food and the mechanism of their aging modulation are imperative steps in developing better, potent and safer functional food for promoting health and compression of morbidity in the aging population.  Budding yeast (Saccharomyces cerevisiae) is invaluable model organism for aging modulation and bioactive compounds discovery. In this paper we have conceptualised a framework for achieving such aim. This framework consists of four components: discovering targets for aging modulation, discovering and validating caloric restriction mimetics, acting as cellular systems for screening natural products or compounds for aging modulation and being a biological factory for producing bioactive compounds according to the roles the yeast systems play. It have been argued that the component of being a biological factory for producing bioactive compounds has much underexplored which also present an opportunity for new active substance discovery and validation for health promotion in functional food industry.Keywords: Aging modulation, budding yeast, functional food, bioactive substances, cell factory


2006 ◽  
Vol 17 (3) ◽  
pp. 1436-1450 ◽  
Author(s):  
Rene P. Zahedi ◽  
Albert Sickmann ◽  
Andreas M. Boehm ◽  
Christiane Winkler ◽  
Nicole Zufall ◽  
...  

Mitochondria consist of four compartments–outer membrane, intermembrane space, inner membrane, and matrix—with crucial but distinct functions for numerous cellular processes. A comprehensive characterization of the proteome of an individual mitochondrial compartment has not been reported so far. We used a eukaryotic model organism, the yeast Saccharomyces cerevisiae, to determine the proteome of highly purified mitochondrial outer membranes. We obtained a coverage of ∼85% based on the known outer membrane proteins. The proteome represents a rich source for the analysis of new functions of the outer membrane, including the yeast homologue (Hfd1/Ymr110c) of the human protein causing Sjögren–Larsson syndrome. Surprisingly, a subclass of proteins known to reside in internal mitochondrial compartments were found in the outer membrane proteome. These seemingly mislocalized proteins included most top scorers of a recent genome-wide analysis for mRNAs that were targeted to mitochondria and coded for proteins of prokaryotic origin. Together with the enrichment of the precursor form of a matrix protein in the outer membrane, we conclude that the mitochondrial outer membrane not only contains resident proteins but also accumulates a conserved subclass of preproteins destined for internal mitochondrial compartments.


2021 ◽  
Vol 9 (10) ◽  
pp. 2044
Author(s):  
Marek Mentel ◽  
Petra Chovančíková ◽  
Igor Zeman ◽  
Peter Polčic

Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.


2021 ◽  
Vol 8 (1) ◽  
pp. 29
Author(s):  
Agnese Kokina ◽  
Kristel Tanilas ◽  
Zane Ozolina ◽  
Karlis Pleiko ◽  
Karlis Shvirksts ◽  
...  

Purine auxotrophy is an abundant trait among eukaryotic parasites and a typical marker for many budding yeast strains. Supplementation with an additional purine source (such as adenine) is necessary to cultivate these strains. If not supplied in adequate amounts, purine starvation sets in. We explored purine starvation effects in a model organism, a budding yeast Saccharomyces cerevisiae ade8 knockout, at the level of cellular morphology, central carbon metabolism, and global transcriptome. We observed that purine-starved cells stopped their cycle in G1/G0 state and accumulated trehalose, and the intracellular concentration of AXP decreased, but adenylate charge remained stable. Cells became tolerant to severe environmental stresses. Intracellular RNA concentration decreased, and massive downregulation of ribosomal biosynthesis genes occurred. We proved that the expression of new proteins during purine starvation is critical for cells to attain stress tolerance phenotype Msn2/4p targets are upregulated in purine-starved cells when compared to cells cultivated in purine-rich media. The overall transcriptomic response to purine starvation resembles that of stationary phase cells. Our results demonstrate that the induction of a strong stress resistance phenotype in budding yeast can be caused not only by natural starvation, but also starvation for metabolic intermediates, such as purines.


1997 ◽  
Vol 8 (6) ◽  
pp. 957-972 ◽  
Author(s):  
V Guacci ◽  
E Hogan ◽  
D Koshland

Although general features of chromosome movement during the cell cycle are conserved among all eukaryotic cells, particular aspects vary between organisms. Understanding the basis for these variations should provide significant insight into the mechanism of chromosome movement. In this context, establishing the types of chromosome movement in the budding yeast Saccharomyces cerevisiae is important since the complexes that mediate chromosome movement (microtubule organizing centers, spindles, and kinetochores) appear much simpler in this organism than in many other eukaryotic cells. We have used fluorescence in situ hybridization to begin an analysis of chromosome movement in budding yeast. Our results demonstrate that the position of yeast centromeres changes as a function of the cell cycle in a manner similar to other eukaryotes. Centromeres are skewed to the side of the nucleus containing the spindle pole in G1; away from the poles in mid-M and clustered near the poles in anaphase and telophase. The change in position of the centromeres relative to the spindle poles supports the existence of anaphase A in budding yeast. In addition, an anaphase A-like activity independent of anaphase B was demonstrated by following the change in centromere position in telophase-arrested cells upon depolymerization and subsequent repolymerization of microtubules. The roles of anaphase A activity and G1 centromere positioning in the segregation of budding yeast chromosomes are discussed. The fluorescence in situ hybridization methodology and experimental strategies described in this study provide powerful new tools to analyze mutants defective in specific kinesin-like molecules, spindle components, and centromere factors, thereby elucidating the mechanism of chromosome movement.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Renata Zadrag-Tecza ◽  
Mateusz Molon ◽  
Jan Mamczur ◽  
Tomasz Bilinski

The lifespan of budding yeast cells is divided into two stages: reproductive and post-reproductive. The post-reproductive stage of the yeast's lifespan has never been characterized before. We have analyzed the influence of various mutations on the post-reproductive (PRLS) and replicative (RLS) lifespans. The results indicate that PRLS demonstrates an inverse relationship with RLS. The observed lack of differences in the total lifespan (TLS) (expressed in units of time) of strains differing up to five times in RLS (expressed in the number of daughters formed) suggests the necessity of revision of opinions concerning the use of yeast as a model organism of gerontology.


Sign in / Sign up

Export Citation Format

Share Document