scholarly journals Natural chromatin is heterogeneous and self-associates in vitro

2018 ◽  
Vol 29 (13) ◽  
pp. 1652-1663 ◽  
Author(s):  
Shujun Cai ◽  
Yajiao Song ◽  
Chen Chen ◽  
Jian Shi ◽  
Lu Gan

The 30-nm fiber is commonly formed by oligonucleosome arrays in vitro but rarely found inside cells. To determine how chromatin higher-order structure is controlled, we used electron cryotomography (cryo-ET) to study the undigested natural chromatin released from two single-celled organisms in which 30-nm fibers have not been observed in vivo: picoplankton and yeast. In the presence of divalent cations, most of the chromatin from both organisms is condensed into a large mass in vitro. Rare irregular 30-nm fibers, some of which include face-to-face nucleosome interactions, do form at the periphery of this mass. In the absence of divalent cations, picoplankton chromatin decondenses into open zigzags. By contrast, yeast chromatin mostly remains condensed, with very few open motifs. Yeast chromatin packing is largely unchanged in the absence of linker histone and mildly decondensed when histones are more acetylated. Natural chromatin is therefore generally nonpermissive of regular motifs, even at the level of oligonucleosomes.

2017 ◽  
Author(s):  
Shujun Cai ◽  
Yajiao Song ◽  
Chen Chen ◽  
Jian Shi ◽  
Lu Gan

ABSTRACTThe 30-nm fiber is commonly found in oligonucleosome arrays in vitro but rarely found in chromatin within nuclei. To determine how chromatin high-order structure is controlled, we used cryo-ET to study the undigested natural chromatin released from cells that do not have evidence of 30-nm fibers in vivo: picoplankton and yeast. In the presence of divalent cations, most of the chromatin from both organisms is compacted into a large mass. Rare irregular 30-nm fibers do form at the periphery of this mass, some of which include face-to-face interactions. In the absence of divalent cations, picoplankton chromatin decondenses into open zigzags. By contrast, yeast chromatin mostly remains compact with looser nucleosome packing, even after treatment with histone-deacetylase inhibitor. The 3-D configuration of natural chromatin is therefore sensitive to the local environment, but generally nonpermissive of regular motifs, even at the level of oligonucleosomes.


2013 ◽  
Vol 24 (15) ◽  
pp. 2406-2418 ◽  
Author(s):  
Agata N. Becalska ◽  
Charlotte F. Kelley ◽  
Cristina Berciu ◽  
Tatiana B. Stanishneva-Konovalova ◽  
Xiaofeng Fu ◽  
...  

Eukaryotic cells are defined by extensive intracellular compartmentalization, which requires dynamic membrane remodeling. FER/Cip4 homology-Bin/amphiphysin/Rvs (F-BAR) domain family proteins form crescent-shaped dimers, which can bend membranes into buds and tubules of defined geometry and lipid composition. However, these proteins exhibit an unexplained wide diversity of membrane-deforming activities in vitro and functions in vivo. We find that the F-BAR domain of the neuronal protein Nervous Wreck (Nwk) has a novel higher-order structure and membrane-deforming activity that distinguishes it from previously described F-BAR proteins. The Nwk F-BAR domain assembles into zigzags, creating ridges and periodic scallops on membranes in vitro. This activity depends on structural determinants at the tips of the F-BAR dimer and on electrostatic interactions of the membrane with the F-BAR concave surface. In cells, Nwk-induced scallops can be extended by cytoskeletal forces to produce protrusions at the plasma membrane. Our results define a new F-BAR membrane-deforming activity and illustrate a molecular mechanism by which positively curved F-BAR domains can produce a variety of membrane curvatures. These findings expand the repertoire of F-BAR domain mediated membrane deformation and suggest that unique modes of higher-order assembly can define how these proteins sculpt the membrane.


2003 ◽  
Vol 81 (3) ◽  
pp. 91-99 ◽  
Author(s):  
Joan-Ramon Daban

The lengths of the DNA molecules of eukaryotic genomes are much greater than the dimensions of the metaphase chromosomes in which they are contained during mitosis. From this observation it has been generally assumed that the linear packing ratio of DNA is an adequate measure of the degree of DNA compaction. This review summarizes the evidence suggesting that the local concentration of DNA is more appropriate than the linear packing ratio for the study of chromatin condensation. The DNA concentrations corresponding to most of the models proposed for the 30–40 nm chromatin fiber are not high enough for the construction of metaphase chromosomes. The interdigitated solenoid model has a higher density because of the stacking of nucleosomes in secondary helices and, after further folding into chromatids, it yields a final concentration of DNA that approaches the experimental value found for condensed chromosomes. Since recent results have shown that metaphase chromosomes contain high concentrations of the chromatin packing ions Mg2+ and Ca2+, it is discussed that dynamic rather than rigid models are required to explain the condensation of the extended fibers observed in the absence of these cations. Finally, considering the different lines of evidence demonstrating the stacking of nucleosomes in different chromatin complexes, it is suggested that the face-to-face interactions between nucleosomes may be the driving force for the formation of higher order structures with a high local concentration of DNA.Key words: chromosomes, metaphase chromosomes, chromatin, chromatin higher order structure, DNA.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pia Montanucci ◽  
Silvia Terenzi ◽  
Claudio Santi ◽  
Ilaria Pennoni ◽  
Vittorio Bini ◽  
...  

Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation,in vitroandin vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.


2002 ◽  
Vol 158 (7) ◽  
pp. 1161-1170 ◽  
Author(s):  
Yali Dou ◽  
Josephine Bowen ◽  
Yifan Liu ◽  
Martin A. Gorovsky

In Tetrahymena cells, phosphorylation of linker histone H1 regulates transcription of specific genes. Phosphorylation acts by creating a localized negative charge patch and phenocopies the loss of H1 from chromatin, suggesting that it affects transcription by regulating the dissociation of H1 from chromatin. To test this hypothesis, we used FRAP of GFP-tagged H1 to analyze the effects of mutations that either eliminate or mimic phosphorylation on the binding of H1 to chromatin both in vivo and in vitro. We demonstrate that phosphorylation can increase the rate of dissociation of H1 from chromatin, providing a mechanism by which it can affect H1 function in vivo. We also demonstrate a previously undescribed ATP-dependent process that has a global effect on the dynamic binding of linker histone to chromatin.


2019 ◽  
Vol 21 (1) ◽  
pp. 34 ◽  
Author(s):  
Toshifumi Kishimoto ◽  
Yuko Yoshikawa ◽  
Kenichi Yoshikawa ◽  
Seiji Komeda

Despite the effectiveness of cisplatin as an anticancer agent, its trans-isomer, transplatin, is clinically ineffective. Although both isomers target nuclear DNA, there is a large difference in the magnitude of their biological effects. Here, we compared their effects on gene expression in an in vitro luciferase assay and quantified their effects on the higher-order structure of DNA using fluorescence microscopy (FM) and atomic force microscopy (AFM). The inhibitory effect of cisplatin on gene expression was about 7 times that of transplatin. Analysis of the fluctuation autocorrelation function of the intrachain Brownian motion of individual DNA molecules showed that cisplatin increases the spring and damping constants of DNA by one order of magnitude and these visco-elastic characteristics tend to increase gradually over several hours. Transplatin had a weaker effect, which tended to decrease with time. These results agree with a stronger inhibitory effect of cisplatin on gene expression. We discussed the characteristic effects of the two compounds on the higher-order DNA structure and gene expression in terms of the differences in their binding to DNA.


1976 ◽  
Vol 70 (3) ◽  
pp. 527-540 ◽  
Author(s):  
M Schliwa

Low concentrations of calcium and magnesium ions have been shown to influence microtubule assembly in vitro. To test whether these cations also have an effect on microtubules in vivo, specimens of Actinosphaerium eichhorni were exposed to different concentrations of Ca++ and Mg++ and the divalent cation ionophore A23187. Experimental degradation and reformation of axopodia were studied by light and electron microscopy. In the presence of Ca++ and the ionophore axopodia gradually shorten, the rate of shortening depending on the concentrations of Ca++ and the ionophore used. Retraction of axopodia was observed with a concentration of Ca++ as low as 0.01 mM. After transfer to a Ca++-free solution containing EGTA, axopodia re-extend; the initial length is reached after about 2 h. Likewise, reformation of axopodia of cold-treated organisms is observed only in solutions of EGTA or Mg++, whereas it is completely inhibited in a Ca++ solution. Electron microscope studies demonstrate degradation of the axonemal microtubular array in organisms treated with Ca++ and A23187. No alteration was observed in organisms treated with Mg++ or EGTA plus ionophore. The results suggest that, in the presence of the ionophore, formation of axonemal microtubules can be regulated by varying the Ca++ concentration in the medium. Since A23187 tends to equilibrate the concentrations of divalent cations between external medium and cell interior, it is likely that microtubule formation invivo is influenced by micromolar concentrations of Ca++. These concentrations are low enough to be of physiological significance for a role in the regulation of microtubule assembly in vivo.


1987 ◽  
Vol 65 (4) ◽  
pp. 729-745 ◽  
Author(s):  
B. M. Altura ◽  
B. T. Altura ◽  
A. Carella ◽  
A. Gebrewold ◽  
T. Murakawa ◽  
...  

Contractility of all types of invertebrate and vertebrate muscle is dependent upon the actions and interactions of two divalent cations, viz., calcium (Ca2+) and magnesium (Mg2+) ions. The data presented and reviewed herein contrast the actions of several organic Ca2+ channel blockers with the natural, physiologic (inorganic) Ca2+ antagonist, Mg2+, on microvascular and macrovascular smooth muscles. Both direct in vivo studies on microscopic arteriolar and venular smooth muscles and in vitro studies on different types of blood vessels are presented. It is clear from the studies done so far that of all Ca2+ antagonists examined, only Mg2+ has the capability to inhibit myogenic, basal, and hormonal-induced vascular tone in all types of vascular smooth muscle. Data obtained with verapamil, nimopidine, nitrendipine, and nisoldipine on the microvasculature are suggestive of the probability that a heterogeneity of Ca2+ channels, and of Ca2+ binding sites, exists in different microvascular smooth muscles; although some appear to be voltage operated and others, receptor operated, they are probably heterogeneous in composition from one vascular region to another. Mg2+ appears to act on voltage-, receptor-, and leak-operated membrane channels in vascular smooth muscle. The organic Ca2+ channel blockers do not have this uniform capability; they demonstrate a selectivity when compared with Mg2+. Mg2+ appears to be a special kind of Ca2+ channel antagonist in vascular smooth muscle. At vascular membranes it can (i) block Ca2+ entry and exit, (ii) lower peripheral and cerebral vascular resistance, (iii) relieve cerebral, coronary, and peripheral vasospasm, and (iv) lower arterial blood pressure. At micromolar concentrations (i.e., 10–100 μM), Mg2+ can cause significant vasodilatation of intact arterioles and venules in all regional vasculatures so far examined. Although Mg2+ is three to five orders of magnitude less potent than the organic Ca2+ channel blockers, it possesses unique and potentially useful Ca2+ antagonistic properties.


1981 ◽  
Vol 90 (2) ◽  
pp. 279-288 ◽  
Author(s):  
J Allan ◽  
G J Cowling ◽  
N Harborne ◽  
P Cattini ◽  
R Craigie ◽  
...  

Chicken erythrocyte chromatins containing a single species of linker histone, H1 or H5, have been prepared, using reassembly techniques developed previously. The reconstituted complexes possess the conformation of native chicken erythrocyte chromatin, as judged by chemical and structural criteria; saturation is reached when two molecules of linker histone are bound per nucleosome, as in native erythrocyte chromatin, which the resulting material resembles in its appearance in the electron microscope and quantitatively in its linear condensation factor relative to free DNA. The periodicity of micrococcal nuclease-sensitive sites in the linker regions associated with histone H1 or H5 is 10.4 base pairs, suggesting that the spatial organization of the linker region in the higher-order structure of chromatin is similar to that in isolated nucleosomes. The susceptible sites are cut at differing frequencies, as previously found for the nucleosome cores, leading to a characteristic distribution of intensities in the digests. The scission frequency of sites in the linker DNA depends additionally on the identity of the linker histone, suggesting that the higher-order structure is subject to secondary modulation by the associated histones.


Sign in / Sign up

Export Citation Format

Share Document