scholarly journals Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10

2021 ◽  
Vol 32 (1) ◽  
pp. 57-73
Author(s):  
Alexandria Brumfield ◽  
Natasha Chaudhary ◽  
Dorothee Molle ◽  
Jennifer Wen ◽  
Johannes Graumann ◽  
...  

Insulin signaling mobilizes glucose transporter 4 (GLUT4) from the trans-Golgi network (TGN) through the AKT-TBC1D4-RAB10 signaling module. GLUT4 localizes to a region of the TGN responsible for retention and release of ATP7A copper transporter and the sorting of lysosomal enzymes to late endosomes.

2019 ◽  
Vol 30 (12) ◽  
pp. 1536-1543 ◽  
Author(s):  
Xiang Pan ◽  
Anatoli Meriin ◽  
Guanrong Huang ◽  
Konstantin V. Kandror

In fat and skeletal muscle cells, insulin-responsive amino peptidase (IRAP) along with glucose transporter 4 (Glut4) and sortilin, represents a major component protein of the insulin-responsive vesicles (IRVs). Here, we show that IRAP, similar to Glut4 and sortilin, is retrieved from endosomes to the trans-Golgi network by retromer. Unlike Glut4, retrograde transport of IRAP does not require sortilin, as retromer can directly bind to the cytoplasmic tail of IRAP. Ablation of IRAP in 3T3-L1 adipocytes shifts the endosomal pool of Glut4 to more acidic endosomes, but does not affect IRV targeting, stability, and insulin responsiveness of Glut4.


2020 ◽  
Author(s):  
Alexandria Brumfield ◽  
Natasha Chaudhary ◽  
Dorothee Molle ◽  
Jennifer Wen ◽  
Johannes Graumann ◽  
...  

ABSTRACTInsulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of GLUT4 from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a Trans Golgi Network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals.


2000 ◽  
Vol 11 (12) ◽  
pp. 4079-4091 ◽  
Author(s):  
Georg Ramm ◽  
Jan Willem Slot ◽  
David E. James ◽  
Willem Stoorvogel

Insulin treatment of fat cells results in the translocation of the insulin-responsive glucose transporter type 4, GLUT4, from intracellular compartments to the plasma membrane. However, the precise nature of these intracellular GLUT4-carrying compartments is debated. To resolve the nature of these compartments, we have performed an extensive morphological analysis of GLUT4-containing compartments, using a novel immunocytochemical technique enabling high labeling efficiency and 3-d resolution of cytoplasmic rims isolated from rat epididymal adipocytes. In basal cells, GLUT4 was localized to three morphologically distinct intracellular structures: small vesicles, tubules, and vacuoles. In response to insulin the increase of GLUT4 at the cell surface was compensated by a decrease in small vesicles, whereas the amount in tubules and vacuoles was unchanged. Under basal conditions, many small GLUT4 positive vesicles also contained IRAP (88%) and the v-SNARE, VAMP2 (57%) but not markers of sorting endosomes (EEA1), late endosomes, or lysosomes (lgp120). A largely distinct population of GLUT4 vesicles (56%) contained the cation-dependent mannose 6-phosphate receptor (CD-MPR), a marker protein that shuttles between endosomes and the trans-Golgi network (TGN). In response to insulin, GLUT4 was recruited both from VAMP2 and CD-MPR positive vesicles. However, while the concentration of GLUT4 in the remaining VAMP2-positive vesicles was unchanged, the concentration of GLUT4 in CD-MPR-positive vesicles decreased. Taken together, we provide morphological evidence indicating that, in response to insulin, GLUT4 is recruited to the plasma membrane by fusion of preexisting VAMP2-carrying vesicles as well as by sorting from the dynamic endosomal-TGN system.


1994 ◽  
Vol 300 (3) ◽  
pp. 743-749 ◽  
Author(s):  
S Martin ◽  
B Reaves ◽  
G Banting ◽  
G W Gould

The exposure of isolated adipocytes to insulin results in an approximately 20-fold increase in the rate of glucose transport into the cell. This increase is mediated by the movement of a pool of intracellular vesicles containing the so-called insulin-responsive glucose transporter (GLUT4) to the cell surface. In the resting state, most of the GLUT4 molecules are sequestered inside the adipocyte in an as yet unidentified intracellular compartment. TGN38 is an integral membrane protein which has been shown to be predominantly localized to the trans Golgi network [Luzio, Brake, Banting, Howell, Braghetta and Stanley (1990) Biochem. J. 270, 97-102]. Here we investigate whether GLUT4 and TGN38 are co-localized in the murine 3T3-L1 adipocyte cell line. Immuno-adsorption of intracellular vesicles containing GLUT4 with an anti-peptide antibody specific for this isoform did not deplete the low-density microsomal fraction of TGN38 in these cells; moreover, no TGN38 was detected in the GLUT4-containing vesicles by immunoblotting with a TGN38-specific antiserum. Immuno-adsorption of TGN38-containing vesicles and subsequent analysis of the proteins in these vesicles revealed that a detectable amount of GLUT4 (5-10%) did co-localise with TGN38. The amount of GLUT4 in the TGN38-containing vesicles did not change in response to insulin. Immunofluorescence analysis of TGN38 and GLUT4 in these cells revealed markedly different staining patterns. Reversal of insulin-stimulated glucose transport and subsequent analysis of the TGN38-containing vesicles demonstrated that during the re-cycling of GLUT4 to the intracellular storage site there was no increase in the amount of GLUT4 co-localized with TGN38. Taken together, these results suggest that the trans Golgi network is not the major site of the intracellular GLUT4 pool within 3T3-L1 adipocytes.


2003 ◽  
Vol 14 (3) ◽  
pp. 973-986 ◽  
Author(s):  
Annette M. Shewan ◽  
Ellen M. van Dam ◽  
Sally Martin ◽  
Tang Bor Luen ◽  
Wanjin Hong ◽  
...  

Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen 1 protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-solubleN-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of thetrans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.


1999 ◽  
Vol 112 (6) ◽  
pp. 845-854 ◽  
Author(s):  
A.C. Valdez ◽  
J.P. Cabaniols ◽  
M.J. Brown ◽  
P.A. Roche

SNARE proteins are known to play a role in regulating intracellular protein transport between donor and target membranes. This docking and fusion process involves the interaction of specific vesicle-SNAREs (e.g. VAMP) with specific cognate target-SNAREs (e.g. syntaxin and SNAP-23). Using human SNAP-23 as the bait in a yeast two-hybrid screen of a human B-lymphocyte cDNA library, we have identified the 287-amino-acid SNARE protein syntaxin 11. Like other syntaxin family members, syntaxin 11 binds to the SNARE proteins VAMP and SNAP-23 in vitro and also exists in a complex with SNAP-23 in transfected HeLa cells and in native human B lymphocytes. Unlike other syntaxin family members, no obvious transmembrane domain is present in syntaxin 11. Nevertheless, syntaxin 11 is predominantly membrane-associated and colocalizes with the mannose 6-phosphate receptor on late endosomes and the trans-Golgi network. These data suggest that syntaxin 11 is a SNARE that acts to regulate protein transport between late endosomes and the trans-Golgi network in mammalian cells.


2011 ◽  
Vol 300 (5) ◽  
pp. H1637-H1644 ◽  
Author(s):  
Yukihiro Ohta ◽  
Shintaro Kinugawa ◽  
Shouji Matsushima ◽  
Taisuke Ono ◽  
Mochamad A. Sobirin ◽  
...  

Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) ( 30 ). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.


1990 ◽  
Vol 110 (4) ◽  
pp. 1023-1032 ◽  
Author(s):  
C F Roff ◽  
C W Hall ◽  
A R Robbins

After 4 h at 41 degrees C, B3853 and M311, temperature-sensitive Chinese hamster ovary cell End1 and End2 mutants, respectively, are pleiotropically defective in endocytosis and trans-Golgi network-associated activities (Roff, C. F., R. Fuchs, I. Mellman, and A. R. Robbins. 1986. J. Cell Biol. 103:2283-2297). We have measured recovery of function after return to the permissive temperature. Based on return of normal transferrin-mediated Fe uptake and sensitivity to diphtheria toxin both mutants had restored endosomal function at 10 h; based on delivery of endocytosed lysosomal enzymes to lysosomes and normal sensitivity to modeccin both had functional late endocytic organelles at 10-12 h; and based on retention of newly synthesized lysosomal enzymes and sialylation of secreted glycoproteins both had functional trans-Golgi network at 6 h. At 10 h, M311 had recovered almost all of its ability to endocytose lysosomal enzymes; B3853 required 30 h to recover fully its ability to endocytose lysosomal enzymes. Slow recovery of mannose 6-phosphate-dependent uptake in B3853 reflected altered trafficking of cation-independent mannose 6-phosphate receptors. Although B3853 had normal amounts of receptor at 6-8 h, it had greatly diminished amounts of receptor at the cell surface. Altered trafficking was also suggested by the finding that B3853 rapidly degraded receptor that had been present before the shift to the nonpermissive temperature.


2021 ◽  
Author(s):  
Jessica Laiman ◽  
Julie Loh ◽  
Wei-Chun Tang ◽  
Mei-Chun Chuang ◽  
Bi-Chang Chen ◽  
...  

AbstractInsulin-induced translocation of glucose transporter 4 (GLUT4) to the plasma membrane of skeletal muscle is critical for postprandial glucose uptake; however, whether the internalization of GLUT4 into cells is also regulated by insulin signaling remains unclear. Here, we discover that the activity of dynamin-2 (Dyn2), pivotal GTPase catalyzing GLUT4 internalization, is regulated by insulin signaling in muscle cells. The membrane fission activity of Dyn2 is inhibited in muscle cells through binding with the SH3 domain-containing protein Bin1. Phosphorylation of Serine848 on Dyn2 by GSK3α or the mutations of Bin1-SH3 in patients with centronuclear myopathy, elevate the activity of Dyn2 due to reduced binding affinity toward Bin1. The augmented Dyn2 fission activity in muscle cells leads to GLUT4 internalization and Bin1-tubule vesiculation. Together, our findings reveal a new role of insulin signaling in glucose metabolism and muscle physiology via attenuating Dyn2 activity thus regulating GLUT4 endocytosis in muscle cell.


Sign in / Sign up

Export Citation Format

Share Document