scholarly journals Comparative analysis of the MyTH4-FERM myosins reveals insights into the determinants of actin track selection in polarized epithelia

2021 ◽  
pp. mbc.E20-07-0494
Author(s):  
Samaneh Matoo ◽  
Maura J. Graves ◽  
Prashun Acharya ◽  
Myoung Soo Choi ◽  
Zachary A. Storad ◽  
...  

MyTH4-FERM (MF) myosins evolved to play a role in the creation and function of a variety of actin-based membrane protrusions that extend from cells. Here, we performed an analysis of the MF myosins, Myo7A, Myo7B, and Myo10, to gain insight into how they select for their preferred actin networks. Using enterocytes that create spatially separated actin tracks in the form of apical microvilli and basal filopodia, we show that actin track selection is principally guided by the mode of oligomerization of the myosin along with the identity of the motor domain, with little influence from the specific composition of the lever arm. Chimeric variants of Myo7A and Myo7B fused to a leucine zipper parallel dimerization sequence in place of their native tails both selected apical microvilli as their tracks, while a truncated Myo10 used its native antiparallel coiled-coil to traffic to the tips of filopodia. Swapping lever arms between the Class 7 and 10 myosins did not change actin track preference. Surprisingly, fusing the motor-neck region of Myo10 to a leucine zipper or oligomerization sequences derived from the Myo7A and Myo7B cargo proteins USH1G and ANKS4B, respectively, re-encoded the actin track usage of Myo10 to apical microvilli with significant efficiency.

2014 ◽  
Vol 111 (10) ◽  
pp. 3811-3816 ◽  
Author(s):  
Takehiro Ogata ◽  
Daisuke Naito ◽  
Naohiko Nakanishi ◽  
Yukiko K. Hayashi ◽  
Takuya Taniguchi ◽  
...  

The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as “caveolae.” Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR–induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.


1996 ◽  
Vol 109 (1) ◽  
pp. 179-190 ◽  
Author(s):  
V. Bouckson-Castaing ◽  
M. Moudjou ◽  
D.J. Ferguson ◽  
S. Mucklow ◽  
Y. Belkaid ◽  
...  

We describe the cDNA cloning of ninein, a novel component of centrosomes. In the mouse, ninein is predicted to be an acidic protein (calculated pI of 4.8) with alternatively spliced forms of 245 kDa and 249 kDa that contain extensive regions of coiled-coil structure flanked by non-coiled ends. Other interesting features of this protein include an EF-hand-like domain, a potential GTP binding site and four leucine zipper domains. Specific polyclonal antisera were raised to two non-overlapping recombinant fragments of the protein and used to characterise the cellular distribution of ninein. Immunofluorescence and immunoelectron microscopy experiments with macrophage-like cells, Mm1, showed that ninein is localised specifically in the pericentriolar matrix of the centrosome. Studies with NIH3T3 fibroblasts demonstrated that ninein is associated with the centrosome throughout the cell cycle and can also be detected within nuclei at interphase. At mitosis ninein was also observed in association with the mitotic spindle. Immunocytochemical staining of mouse tissues showed that ninein was expressed in a heterogeneous fashion. Staining, if present, was always consistent with a centrosomal localisation and was never associated with nuclei. Ninein provides a new molecular tool for analysing the structure and function of the centrosome.


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


2019 ◽  
Vol 14 (6) ◽  
pp. 470-479 ◽  
Author(s):  
Nazia Parveen ◽  
Amen Shamim ◽  
Seunghee Cho ◽  
Kyeong Kyu Kim

Background: Although most nucleotides in the genome form canonical double-stranded B-DNA, many repeated sequences transiently present as non-canonical conformations (non-B DNA) such as triplexes, quadruplexes, Z-DNA, cruciforms, and slipped/hairpins. Those noncanonical DNAs (ncDNAs) are not only associated with many genetic events such as replication, transcription, and recombination, but are also related to the genetic instability that results in the predisposition to disease. Due to the crucial roles of ncDNAs in cellular and genetic functions, various computational methods have been implemented to predict sequence motifs that generate ncDNA. Objective: Here, we review strategies for the identification of ncDNA motifs across the whole genome, which is necessary for further understanding and investigation of the structure and function of ncDNAs. Conclusion: There is a great demand for computational prediction of non-canonical DNAs that play key functional roles in gene expression and genome biology. In this study, we review the currently available computational methods for predicting the non-canonical DNAs in the genome. Current studies not only provide an insight into the computational methods for predicting the secondary structures of DNA but also increase our understanding of the roles of non-canonical DNA in the genome.


Author(s):  
Daniel Elieh Ali Komi ◽  
Wolfgang M. Kuebler

AbstractMast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.


2017 ◽  
Vol 217 (2) ◽  
pp. 779-793 ◽  
Author(s):  
Rebecca C. Adikes ◽  
Ryan A. Hallett ◽  
Brian F. Saway ◽  
Brian Kuhlman ◽  
Kevin C. Slep

We developed a novel optogenetic tool, SxIP–improved light-inducible dimer (iLID), to facilitate the reversible recruitment of factors to microtubule (MT) plus ends in an end-binding protein–dependent manner using blue light. We show that SxIP-iLID can track MT plus ends and recruit tgRFP-SspB upon blue light activation. We used this system to investigate the effects of cross-linking MT plus ends and F-actin in Drosophila melanogaster S2 cells to gain insight into spectraplakin function and mechanism. We show that SxIP-iLID can be used to temporally recruit an F-actin binding domain to MT plus ends and cross-link the MT and F-actin networks. Cross-linking decreases MT growth velocities and generates a peripheral MT exclusion zone. SxIP-iLID facilitates the general recruitment of specific factors to MT plus ends with temporal control enabling researchers to systematically regulate MT plus end dynamics and probe MT plus end function in many biological processes.


Biochemistry ◽  
1997 ◽  
Vol 36 (41) ◽  
pp. 12567-12573 ◽  
Author(s):  
Jaideep Moitra ◽  
Lászlo Szilák ◽  
Dmitry Krylov ◽  
Charles Vinson

2016 ◽  
Vol 27 (16) ◽  
pp. 2528-2541 ◽  
Author(s):  
Yajun Liu ◽  
I-Ju Lee ◽  
Mingzhai Sun ◽  
Casey A. Lower ◽  
Kurt W. Runge ◽  
...  

Rho GAPs are important regulators of Rho GTPases, which are involved in various steps of cytokinesis and other processes. However, regulation of Rho-GAP cellular localization and function is not fully understood. Here we report the characterization of a novel coiled-coil protein Rng10 and its relationship with the Rho-GAP Rga7 in fission yeast. Both rng10Δ and rga7Δ result in defective septum and cell lysis during cytokinesis. Rng10 and Rga7 colocalize on the plasma membrane at the cell tips during interphase and at the division site during cell division. Rng10 physically interacts with Rga7 in affinity purification and coimmunoprecipitation. Of interest, Rga7 localization is nearly abolished without Rng10. Moreover, Rng10 and Rga7 work together to regulate the accumulation and dynamics of glucan synthases for successful septum formation in cytokinesis. Our results show that cellular localization and function of the Rho-GAP Rga7 are regulated by a novel protein, Rng10, during cytokinesis in fission yeast.


2008 ◽  
Vol 105 (40) ◽  
pp. 15275-15280 ◽  
Author(s):  
Ian R. Wheeldon ◽  
Joshua W. Gallaway ◽  
Scott Calabrese Barton ◽  
Scott Banta

Here, we present two bifunctional protein building blocks that coassemble to form a bioelectrocatalytic hydrogel that catalyzes the reduction of dioxygen to water. One building block, a metallopolypeptide based on a previously designed triblock polypeptide, is electron-conducting. A second building block is a chimera of artificial α-helical leucine zipper and random coil domains fused to a polyphenol oxidase, small laccase (SLAC). The metallopolypeptide has a helix–random-helix secondary structure and forms a hydrogel via tetrameric coiled coils. The helical and random domains are identical to those fused to the polyphenol oxidase. Electron-conducting functionality is derived from the divalent attachment of an osmium bis-bipyrdine complex to histidine residues within the peptide. Attachment of the osmium moiety is demonstrated by mass spectroscopy (MS-MALDI-TOF) and cyclic voltammetry. The structure and function of the α-helical domains are confirmed by circular dichroism spectroscopy and by rheological measurements. The metallopolypeptide shows the ability to make electrical contact to a solid-state electrode and to the redox centers of modified SLAC. Neat samples of the modified SLAC form hydrogels, indicating that the fused α-helical domain functions as a physical cross-linker. The fusion does not disrupt dimer formation, a necessity for catalytic activity. Mixtures of the two building blocks coassemble to form a continuous supramolecular hydrogel that, when polarized, generates a catalytic current in the presence of oxygen. The specific application of the system is a biofuel cell cathode, but this protein-engineering approach to advanced functional hydrogel design is general and broadly applicable to biocatalytic, biosensing, and tissue-engineering applications.


Sign in / Sign up

Export Citation Format

Share Document