scholarly journals Acute ethanol stress induces sumoylation of conserved chromatin structural proteins in Saccharomyces cerevisiae

2020 ◽  
Author(s):  
Amanda I. Bradley ◽  
Nicole M. Marsh ◽  
Heather R. Borror ◽  
Kaitlyn E. Mostoller ◽  
Amber I. Gama ◽  
...  

AbstractStress is a ubiquitous part of life that disrupts cellular function and, if unresolved, can irreparably damage essential biomolecules and organelles. All organisms can experience stress in the form of unfavorable environmental conditions including exposure to extreme temperatures, hypoxia, reactive oxygen species, alcohol, or shifts in osmolarity. To survive, organisms must sense these changes then react and adapt. One highly conserved adaptive response to stress is through protein sumoylation, which is a post-translational modification by the small ubiquitin-like modifier (SUMO) protein. In this study, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae. Although ethanol induces protein sumoylation, the targets and roles of sumoylation are largely unknown. Here, we found that cells exhibit a transient sumoylation response after exposure of cells to ≤ 7.5% volume/volume ethanol. The response peaks at 15 minutes and resolves by 60 minutes, indicating that cells have an adaptive response to low concentrations of ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol stress with no resolution by 60 minutes. To identify key targets of ethanol-induced sumoylation, we performed mass spectrometry analyses and identified 18 proteins with increased sumoylation after acute ethanol exposure, with 15 identified as known chromatin-associated proteins. Two of these proteins are the chromatin structural proteins Smc5 and Smc6, which are sumoylated by the activity of the SUMO ligase Mms21. Ethanol-induced Smc5/6 sumoylation occurs during G1 and G2M phases of the cell cycle but is abrogated during S phase despite the fact that other proteins are sumoylated during this phase. Acute ethanol exposure leads to formation of Rad52 foci indicating DNA damage similar to that observed with the addition of methyl methanesulfonate (MMS), which is an alkylating agent that damages DNA. Whereas MMS exposure induces the intra-S phase DNA damage checkpoint as observed by Rad53 phosphorylation, ethanol exposure does not induce the intra-S phase checkpoint and prevents Rad53 phosphorylation when added with MMS. From these results, we propose that ethanol induces a structural change in chromatin, possibly through DNA damage, and this causes sumoylation of conserved chromatin-associated proteins, including Smc5 and Smc6.

2021 ◽  
pp. mbc.E20-11-0715
Author(s):  
Amanda I. Bradley ◽  
Nicole M. Marsh ◽  
Heather R. Borror ◽  
Kaitlyn E. Mostoller ◽  
Amber I. Gama ◽  
...  

Stress is ubiquitous to life and can irreparably damage essential biomolecules and organelles in cells. To survive, organisms must sense and adapt to stressful conditions. One highly conserved adaptive stress response is through the post-translational modification of proteins by the small ubiquitin-like modifier (SUMO). Here, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae . We found that cells exhibit a transient sumoylation response after acute exposure to ≤ 7.5% ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol exposure. Mass spectrometry analyses identified 18 proteins that are sumoylated after acute ethanol exposure, with 15 known to associate with chromatin. Upon further analysis, we found that the chromatin structural proteins Smc5 and Smc6 undergo ethanol-induced sumoylation that depends on the activity of the E3 SUMO ligase Mms21. Using cell-cycle arrest assays, we observed that Smc5 and Smc6 ethanol-induced sumoylation occurs during G1 and G2/M phases but not S phase. Acute ethanol exposure also resulted in the formation of Rad52 foci at levels comparable to Rad52 foci formation after exposure to the DNA alkylating agent methyl methanesulfonate (MMS). MMS exposure is known to induce the intra-S phase DNA damage checkpoint via Rad53 phosphorylation, but ethanol exposure did not induce Rad53 phosphorylation. Ethanol abrogated the effect of MMS on Rad53 phosphorylation when added simultaneously. From these studies, we propose that acute ethanol exposure induces a change in chromatin leading to sumoylation of specific chromatin-structural proteins.


2020 ◽  
Vol 20 (4) ◽  
pp. 504-517
Author(s):  
Yu-Lan Li ◽  
Xin-Li Gan ◽  
Rong-Ping Zhu ◽  
Xuehong Wang ◽  
Duan-Fang Liao ◽  
...  

Objective: To overcome the disadvantages of cisplatin, numerous platinum (Pt) complexes have been prepared. However, the anticancer activity and mechanism of Pt(II) complexed with 2-benzoylpyridine [Pt(II)- Bpy]: [PtCl2(DMSO)L] (DMSO = dimethyl sulfoxide, L = 2-benzoylpyridine) in cancer cells remain unknown. Methods: Pt(II)-Bpy was synthesized and characterized by spectrum analysis. Its anticancer activity and underlying mechanisms were demonstrated at the cellular, molecular, and in vivo levels. Results: Pt(II)-Bpy inhibited tumor cell growth, especially HepG2 human liver cancer cells, with a halfmaximal inhibitory concentration of 9.8±0.5μM, but with low toxicity in HL-7702 normal liver cells. Pt(II)- Bpy induced DNA damage, which was demonstrated through a marked increase in the expression of cleavedpoly (ADP ribose) polymerase (PARP) and gamma-H2A histone family member X and a decrease in PARP expression. The interaction of Pt(II)-Bpy with DNA at the molecular level was most likely through an intercalation mechanism, which might be evidence of DNA damage. Pt(II)-Bpy initiated cell cycle arrest at the S phase in HepG2 cells. It also caused severe loss of the mitochondrial membrane potential; a decrease in the expression of caspase-9 and caspase-3; an increase in reactive oxygen species levels; the release of cytochrome c and apoptotic protease activation factor; and the activation of caspase-9 and caspase-3 in HepG2 cells, which in turn resulted in apoptosis. Meanwhile, changes in p53 and related proteins were observed including the upregulation of p53, the phosphorylation of p53, p21, B-cell lymphoma-2-associated X protein, and NOXA; and the downregulation of B-cell lymphoma 2. Moreover, Pt(II)-Bpy displayed marked inhibitory effects on tumor growth in the HepG2 nude mouse model. Conclusion: Pt(II)-Bpy is a potential candidate for cancer chemotherapy.


Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 17-33
Author(s):  
Matthew D Jacobson ◽  
Claudia X Muñoz ◽  
Kirstin S Knox ◽  
Beth E Williams ◽  
Lenette L Lu ◽  
...  

Abstract SIC1 encodes a nonessential B-type cyclin/CDK inhibitor that functions at the G1/S transition and the exit from mitosis. To understand more completely the regulation of these transitions, mutations causing synthetic lethality with sic1Δ were isolated. In this screen, we identified a novel gene, SID2, which encodes an essential protein that appears to be required for DNA replication or repair. sid2-1 sic1Δ strains and sid2-21 temperature-sensitive strains arrest preanaphase as large-budded cells with a single nucleus, a short spindle, and an ~2C DNA content. RAD9, which is necessary for the DNA damage checkpoint, is required for the preanaphase arrest of sid2-1 sic1Δ cells. Analysis of chromosomes in mutant sid2-21 cells by field inversion gel electrophoresis suggests the presence of replication forks and bubbles at the arrest. Deleting the two S phase cyclins, CLB5 and CLB6, substantially suppresses the sid2-1 sic1Δ inviability, while stabilizing Clb5 protein exacerbates the defects of sid2-1 sic1Δ cells. In synchronized sid2-1 mutant strains, the onset of replication appears normal, but completion of DNA synthesis is delayed. sid2-1 mutants are sensitive to hydroxyurea indicating that sid2-1 cells may suffer DNA damage that, when combined with additional insult, leads to a decrease in viability. Consistent with this hypothesis, sid2-1 rad9 cells are dead or very slow growing even when SIC1 is expressed.


2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 550
Author(s):  
Indra A. Shaltiel ◽  
Alba Llopis ◽  
Melinda Aprelia ◽  
Rob Klompmaker ◽  
Apostolos Menegakis ◽  
...  

Most Cyclin-dependent kinases (Cdks) are redundant for normal cell division. Here we tested whether these redundancies are maintained during cell cycle recovery after a DNA damage-induced arrest in G1. Using non-transformed RPE-1 cells, we find that while Cdk4 and Cdk6 act redundantly during normal S-phase entry, they both become essential for S-phase entry after DNA damage in G1. We show that this is due to a greater overall dependency for Cdk4/6 activity, rather than to independent functions of either kinase. In addition, we show that inactivation of pocket proteins is sufficient to overcome the inhibitory effects of complete Cdk4/6 inhibition in otherwise unperturbed cells, but that this cannot revert the effects of Cdk4/6 inhibition in DNA damaged cultures. Indeed, we could confirm that, in addition to inactivation of pocket proteins, Cdh1-dependent anaphase-promoting complex/cyclosome (APC/CCdh1) activity needs to be inhibited to promote S-phase entry in damaged cultures. Collectively, our data indicate that DNA damage in G1 creates a unique situation where high levels of Cdk4/6 activity are required to inactivate pocket proteins and APC/CCdh1 to promote the transition from G1 to S phase.


2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Shridevi Shelke ◽  
Birajalaxmi Das

Abstract Background Radio-adaptive response (RAR) is transient phenomena, where cells conditioned with a small dose (priming) of ionizing radiation shows significantly reduced DNA damage with a subsequent high challenging dose. The role of DNA double strand break repair gene polymorphism in RAR is not known. In the present study attempt was made to find out the influence of NHEJ repair gene polymorphisms [a VNTR; XRCC5 (3R/2R/1R/0R); two single nucleotide polymorphisms (SNPs); XRCC6 (C/G) and XRCC7 (G/T)] with DNA damage, repair and mRNA expression in human PBMCs in dose and adaptive response studies. Genomic DNA extracted from venous blood samples of 20 random healthy donors (16 adaptive and 4 non-adaptive) and genotyping of NHEJ repair genes was carried out using PCR amplified length polymorphism. Results The dose response study revealed significant positive correlation of genotypes at XRRC5 (3R/2R/1R/0R), XRCC6(C/G) and XRCC7 (G/T) with DNA damage. Donors having genotypes with 2R allele at XRCC5 showed significant positive correlation with mRNA expression level (0R/2R: r = 0.846, P = 0.034; 1R/2R: r = 0.698, P = 0.0001 and 2R/2R: r = 0.831, P = 0.0001) for dose response. Genotypes C/C and C/G of XRCC6 showed a significant positive correlation (P = 0.0001), whereas, genotype T/T of XRCC7 showed significant negative correlation (r = − 0.376, P = 0.041) with mRNA expression. Conclusion Interestingly, adaptive donors having C/G genotype of XRCC6 showed significantly higher (P < 0.05) mRNA expression level in primed cells suggesting their role in RAR. In addition, NHEJ repair gene polymorphisms play crucial role with radio-sensitivity and RAR in human PBMCs.


Author(s):  
Xiaofeng Jiang ◽  
Michael R. MacArthur ◽  
J. Humberto Treviño-Villarreal ◽  
Peter Kip ◽  
C. Keith Ozaki ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. eabe3882
Author(s):  
Jenny F. Nathans ◽  
James A. Cornwell ◽  
Marwa M. Afifi ◽  
Debasish Paul ◽  
Steven D. Cappell

The G1-S checkpoint is thought to prevent cells with damaged DNA from entering S phase and replicating their DNA and efficiently arrests cells at the G1-S transition. Here, using time-lapse imaging and single-cell tracking, we instead find that DNA damage leads to highly variable and divergent fate outcomes. Contrary to the textbook model that cells arrest at the G1-S transition, cells triggering the DNA damage checkpoint in G1 phase route back to quiescence, and this cellular rerouting can be initiated at any point in G1 phase. Furthermore, we find that most of the cells receiving damage in G1 phase actually fail to arrest and proceed through the G1-S transition due to persistent cyclin-dependent kinase (CDK) activity in the interval between DNA damage and induction of the CDK inhibitor p21. These observations necessitate a revised model of DNA damage response in G1 phase and indicate that cells have a G1 checkpoint.


Sign in / Sign up

Export Citation Format

Share Document