Design of fibronectin type III domains fused to an elastin-like polypeptide for the osteogenic differentiation of human mesenchymal stem cells

2019 ◽  
Vol 51 (8) ◽  
pp. 856-863
Author(s):  
Sujin Lee ◽  
Ji-Eun Kim ◽  
Hye-Jin Seo ◽  
Jun-Hyeog Jang

Abstract Extracellular matrix (ECM) including fibronectin (FN) and elastin plays a pivotal role in providing a microenvironment to support tissue regeneration in stem cell therapy. To develop a novel biomimetic ECM for stem cell differentiation, we engineered FN type III 9 and 10 domains fused to elastin-like polypeptides (FN-ELPs). The recombinant FN-ELP fusion protein was expressed in Escherichia coli and purified by inverse transition cycling. Human mesenchymal stem cells (hMSCs) cultured on plates coated with FN-ELP had significantly greater adhesion activity and proliferation than cells grown on non-coated plates. FN-ELP induced the osteogenic differentiation by elevating alkaline phosphatase (ALP) and mineralization activity of hMSCs. Furthermore, the osteogenic marker gene expressions of ALP, collagen type I (Col I), osteopontin (OPN), and transcriptional coactivator with a PDZ-binding motif (TAZ) were increased in hMSCs cultured on plates coated with FN-ELP. We reported a novel biomimetic ECM with potential for bone regeneration that promotes the osteogenic differentiation of hMSCs.

2021 ◽  
Vol 55 (3) ◽  
pp. 311-326

Background/Aims: The skeleton is a metabolically active organ undergoing continuous remodelling initiated by mesenchymal progenitors present in bone and bone marrow. Under certain pathological conditions this remodelling balance shifts towards increased resorption resulting in weaker bone microarchitecture, and there is consequently a therapeutic need to identify pathways that could inversely enhance bone formation from stem cells. Metabolomics approaches recently applied to stem cell characterisation could help identify new biochemical markers involved in osteogenic differentiation. Methods: Combined intra- and extracellular metabolite profiling was performed by liquid chromatography-mass spectrometry (LC-MS) on human mesenchymal stem cells (MSCs) undergoing osteogenic differentiation in vitro. Using a combination of univariate and multivariate analyses, changes in metabolite and nutrient concentration were monitored in cultures under osteogenic treatment over 10 days. Results: A subset of differentially detected compounds was identified in differentiating cells, suggesting a direct link to metabolic processes involved in osteogenic response. Conclusion: These results highlight new metabolite candidates as potential biomarkers to monitor stem cell differentiation towards the bone lineage.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260760
Author(s):  
Bo-Hyun Park ◽  
Eui-Seung Jeong ◽  
Sujin Lee ◽  
Jun-Hyeog Jang

Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.


2015 ◽  
Vol 3 (16) ◽  
pp. 3150-3168 ◽  
Author(s):  
Sunil Kumar Boda ◽  
Greeshma Thrivikraman ◽  
Bikramjit Basu

Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.


2021 ◽  
Vol 50 (1) ◽  
pp. 239-251
Author(s):  
Kim Shyong Siow ◽  
Arifah Rahman ◽  
Amnani Aminuddin ◽  
Pei Yuen Ng

The role of sulfur and its synergistic effects with nitrogen moieties in mediating stem cell proliferation and differentiation has become of interest to the tissue engineering community due to chemical similarities with the glycosaminoglycans found in human tissues and cells. Glycosaminoglycans are biomolecules known to influence stem cell differentiation, but the roles of sulfur with different oxidation states on nitrogen-containing polymers have not been fully understood nor investigated. In this study, we used the plasma polymerization of 1,7-octadiene (ppOD), n-heptylamine (ppHA), ppHA grafted with vinyl-sulfonate via Michael-type addition (ppHA-SO3), thiophene (ppT), and ppT with air plasma treatment (ppT-air) to produce controlled amounts of nitrogen and sulfur moieties having different oxidation states, as confirmed by x-ray photoelectron spectroscopy. Assays of the proliferation and osteogenic activities of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) showed the highest activities for ppHA, followed by ppHA-SO3, due to high percentages of amines/amides and the absence of SO3 moieties in ppHA. Other plasma polymers showed less proliferation and osteogenic differentiation than the positive control (glass substrate); however, WJ-MSCs grown on ppT-air with its high percentages of SO4 displayed cytoskeletons intensified with actin stress fiber, unlike the thiol-dominated ppT. Finally, the presence of methyl groups in ppOD severely limited WJ-MSCs proliferation and differentiation. Overall, these results confirm the beneficial effects of amine/amide groups on WJ-MSCs proliferation and osteogenic differentiation, but the combination of these groups with sulfur of various oxidation states failed to further enhance such cellular activities.


2014 ◽  
Vol 50 (62) ◽  
pp. 8484-8487 ◽  
Author(s):  
Rameshwar Tatavarty ◽  
Hao Ding ◽  
Guijin Lu ◽  
Robert J. Taylor ◽  
Xiaohong Bi

Nanocomposites consisting of oblong ultrathin plate shaped calcium phosphate nanoparticles and graphene oxide microflakes were synthesized and have demonstrated markedly synergistic effect in accelerating stem cell differentiation to osteoblasts.


2012 ◽  
Vol 19 (2) ◽  
pp. 75-79 ◽  
Author(s):  
Gabrielis KUNDROTAS

Human mesenchymal stem cells (MSCs) are widely used for treatment of various diseases. Clinical applications require large quantities of MSCs, therefore these cells must be expanded in the culture system. It is believed that contamination of MSC cultures with fibroblasts may lead to the decrease of the stem cell differentiation potential. Moreover, such stem cell preparations are potentially unsafe to use for clinical applications since a few fibroblasts can become tumorigenic. Therefore, there is a need to separate MSCs from fibroblasts. However, studies show that MSCs and fibroblasts have much in common. These two types of cells share such properties as identical spindle-like morphology, plastic adherence and the same expression of most surface antigens. The aim of this review article is to analyze the literature on the similarities and differences between the MSCs and fibroblasts, particularly in the expression of cell surface markers in order to determine which could be used for quick separating of MSCs from fibroblasts. Interestingly, the results of recent studies suggest that the use of CD10, CD26, CD106, CD146 and ITGA11 could be helpful for the discrimination of MSCs from fibroblasts. Identification and elimination of fibroblasts from MSC cultures could improve the MSC yield and differentiation potential and also prevent possible tumor formation after MSC transplantation.


2019 ◽  
Author(s):  
Leiluo Yang ◽  
Qing Li ◽  
Junhong Zhang ◽  
Pengcheng Li ◽  
Chaoliang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document