TIPE1 suppresses the invasion and migration of breast cancer cells and inhibits epithelial-to-mesenchymal transition primarily via the ERK signaling pathway

2019 ◽  
Vol 51 (10) ◽  
pp. 1008-1015 ◽  
Author(s):  
Shusheng Qiu ◽  
Wei Hu ◽  
Qiuhong Ma ◽  
Yi Zhao ◽  
Liang Li ◽  
...  

Abstract Tumor necrosis factor α-induced protein 8-like-1 (TIPE1) functions as an activator or a repressor in a tumor cell type-specific manner. However, the role of TIPE1 in breast cancer, especially regarding metastasis, is unknown. In this study, we aimed to investigate the TIPE1 expression in breast cancer tissues, the biological functions, and the underlying mechanisms of TIPE1 regarding the metastatic properties of breast cancer cells. The results of immunohistochemical staining and western blot analysis indicated that TIPE1 expression was associated with tumor size and lymph node metastasis, and the expression of TIPE1 was downregulated in the tissues of patients with lymph node metastasis. Transwell and wound healing assay results showed that TIPE1 inhibited the invasive and migratory capacities of breast cancer cells. Moreover, the epithelial-mesenchymal transition (EMT) was suppressed in TIPE1-overexpressing cells, as demonstrated by western blot analysis. In addition, western blot analysis also showed that TIPE1 reduced the expression levels of MMP2 and MMP9 and decreased the phosphorylation level of ERK. These results suggested that TIPE1 might suppress the invasion and migration of breast cancer cells and inhibit EMT primarily via the ERK signaling pathway. Our findings revealed the anti-tumor metastasis role of TIPE1 in breast cancer and TIPE1 might be a new candidate prognostic indicator and a potential molecular target for the treatment of breast cancer.

2020 ◽  
Author(s):  
Gang Xu ◽  
Shanshan Bu ◽  
Xiushen Wang ◽  
He Zhang ◽  
Hong Ge

Abstract Background CCT3 is a subunit of chaperonin-containing TCP-1 (CCT), which folds many proteins involved in cancer development and plays an important role in many cancers. However, the role of CCT3 in breast cancer is still unclear. Methods CCT3 expression was knocked down by transfecting breast cancer cells with lentiviral shRNA. The proliferation of breast cancer cells (HCC1937 and MDA-MB-231) was detected by Celigo image cytometry and MTT assay, the migration of the cells was measured by Transwell analysis, cell cycle distribution and apoptosis was detected by flow cytometry, and changes in signal transduction proteins were detected by western blot analysis. Results The expression of CCT3 was significantly suppressed by transduction with lentiviral shRNA; CCT3 knockdown significantly reduced the proliferation and metastasis ability of breast cancer cells (HCC 1937 and MDA-MB-231), increased the proportion of cells in S phase, and decreased the proportion of cells in G1 phase compared to those in shControl cells. There was no significant change in the number of cells in the G2/M phase. Apoptosis analysis showed that knockdown of CCT3 induced apoptosis in breast cancer cells. Western blot analysis showed that the expression of many signal transduction proteins was changed after suppression of CCT3. Conclusion CCT3 is closely related to the proliferation and migration of breast cancer and may be a novel therapeutic target.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10109-10109
Author(s):  
B. T. Martin ◽  
K. Kleiber ◽  
M. Kaufmann ◽  
K. Strebhardt

10109 Background: FHL2 belongs to the expanding family of proteins that possess highly conserved double Zn-finger motifs, CX2CX16–23HX2CX2CX2CX16–21CX2 (C/H/D), and are involved in protein-protein interactions and transcriptional regulation. FHL2 was primarily described as “down regulated in rhabdomyosarcama cells LIM domain protein” (DRAL). Further studies also indicated a connection of FHL2 with the tumor biology. Its expression has been shown to be increased in tumors of epithelial and melanoma cell origin. A recent publication describes the interaction of FHL2 with the breast cancer susceptibility gene 1 (BRCA1) but to date little is known about the function of FHL2 in breast cancer. Methods: Tumor samples of 61 breast cancer patients and 8 normal breast tissues were lysed and subjected to Western blot analysis using a monoclonal FHL2-specific antibody; Tissue specimens of normal breast and breast cancer were histologically examined with the monoclonal antibody used for the Western blot analysis; Luciferase assays were carried out in MCF-7 breast cancer cells, using AP1-dependent reporter plasmids. Anchorage-independent growth was assayed by colony formation in soft agar. Results: FHL2 is overexpressed in almost all human breast cancer tissues tested but not in normal breast tissues and only low levels of FHL2 expression were present in four premalignant ductal carcinoma in situ (DCIS). Co-immunoprecipitation assays and GST-pull down experiments revealed that FHL2 interacts with the proto-oncogene c-jun in breast cancer cells. Reporter gene assays demonstrated that FHL2 represses c-jun-mediated activation of an idealized AP-1-regulated reporter gene in a dose-dependent manner. This repression was also seen on the naturally occurring AP-1-dependent IL2 promoter. The repression domain was identified within the N-terminal half of the FHL2 molecule. Finally, we show that stable expression of FHL2 leads to anchorage-independent growth of breast cancer cells in soft agar. Conclusions: Taken together, our data suggest that by modulating the activity of transcription factors such as c-jun, the expression of FHL2 in breast cancer might contribute to the malignant potential of breast tumors. No significant financial relationships to disclose.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dongping Mo ◽  
Fang He ◽  
Junyu Zheng ◽  
Huanhuan Chen ◽  
Li Tang ◽  
...  

tRNA derivatives have been identified as a new kind of potential biomarker for cancer. Previous studies have identified that there were 30 differentially expressed tRNAs derivatives in breast cancer tissue with the high-throughput sequencing technique. This study aimed to investigate the possible biological function and mechanism of tRNA derivatives in breast cancer cells. One such tRF, a 5’-tRF fragment of tRF-17-79MP9PP (tRF-17) was screened in this study, which is processed from the mature tRNA-Val-AAC and tRNA-Val-CAC. tRF-17 with significantly low expression in breast cancer tissues and serum. The level of tRF-17 differentiated breast cancer from healthy controls with sensitivity of 70.4% and specificity of 68.4%. Overexpression of tRF-17 suppressed cells malignant activity. THBS1 (Thrombospondin-1) as a downstream target of tRF-17, and reduction of THBS1 expression also partially recovered the effects of tRF-17 inhibition on breast cancer cell viability, invasion and migration. Besides, THBS1, TGF-β1, Smad3, p-Smad3 and epithelial-to-mesenchymal transition related genes N-cadherin, MMP3, MMP9 were markedly down-regulated in tRF-17 overexpressing cells. Moreover, tRF-17 attenuated the THBS1-mediated TGF-β1/Smad3 signaling pathway in breast cancer cells. In general, the tRF-17/THBS1/TGF-β1/smad3 axis elucidates the molecular mechanism of breast cancer cells invasion and migration and could lead to a potential therapeutic target for breast cancer.


2014 ◽  
Vol 60 (3) ◽  
pp. 322-331 ◽  
Author(s):  
E.A. Avilova ◽  
O.E. Andreeva ◽  
V.A. Shatskaya ◽  
M.A. Krasilnikov

The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qianxue Wu ◽  
Xin Tang ◽  
Wenming Zhu ◽  
Qing Li ◽  
Xiang Zhang ◽  
...  

BackgroundPatients with triple-negative breast cancer (TNBC) have poor overall survival. The present study aimed to investigate the potential prognostics of TNBC by analyzing breast cancer proteomic and transcriptomic datasets.MethodsCandidate proteins selected from CPTAC (the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium) were validated using datasets from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). Kaplan-Meier analysis and ROC (receiver operating characteristic) curve analysis were performed to explore the prognosis of candidate genes. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were performed on the suspected candidate genes. Single-cell RNA-seq (scRNA-seq) data from GSE118389 were used to analyze the cell clusters in which OBFC2A (Oligosaccharide-Binding Fold-Containing Protein 2A) was mainly distributed. TIMER (Tumor Immune Estimation Resource) was used to verify the correlation between OBFC2A expression and immune infiltration. Clone formation assays and wound healing assays were used to detect the role of OBFC2A expression on the proliferation, invasion, and migration of breast cancer cells. Flow cytometry was used to analyze the effects of silencing OBFC2A on breast cancer cell cycle and apoptosis.ResultsSix candidate proteins were found to be differentially expressed in non-TNBC and TNBC groups from CPTAC. However, only OBFC2A was identified as an independently poor prognostic gene marker in METABRIC (HR=3.658, 1.881-7.114). And OBFC2A was associated with immune functions in breast cancer. Biological functional experiments showed that OBFC2A might promote the proliferation and migration of breast cancer cells. The inhibition of OBFC2A expression blocked the cell cycle in G1 phase and inhibited the transformation from G1 phase to S phase. Finally, downregulation of OBFC2A also increased the total apoptosis rate of cells.ConclusionOn this basis, OBFC2A may be a potential prognostic biomarker for TNBC.


Sign in / Sign up

Export Citation Format

Share Document