Raptor Vision

Author(s):  
Mindaugas Mitkus ◽  
Simon Potier ◽  
Graham R. Martin ◽  
Olivier Duriez ◽  
Almut Kelber

Diurnal raptors (birds of the orders Accipitriformes and Falconiformes), renowned for their extraordinarily sharp eyesight, have fascinated humans for centuries. The high visual acuity in some raptor species is possible due to their large eyes, both in relative and absolute terms, and a high density of cone photoreceptors. Some large raptors, such as wedge-tailed eagles and the Old World vultures, have visual acuities twice as high as humans and six times as high as ostriches—the animals with the largest terrestrial eyes. The raptor retina has rods, double cones, and four spectral types of single cones. The highest density of single cones occurs in one or two specialized retinal regions: the foveae, where, at least in some species, rods and double cones are absent. The deep central fovea allows for the highest acuity in the lateral visual field that is probably used for detecting prey from a large distance. Pursuit-hunting raptors have a second, shallower, temporal fovea that allows for sharp vision in the frontal field of view. Scavenging carrion eaters do not possess a temporal fovea that may indicate different needs in foraging behavior. Moreover, pursuit-hunting and scavenging raptors also differ in configuration of visual fields, with a more extensive field of view in scavengers. The eyes of diurnal raptors, unlike those of most other birds, are not very sensitive to ultraviolet light, which is strongly absorbed by their cornea and lens. As a result of the low density of rods, and the narrow and densely packed single cones in the central fovea, the visual performance of diurnal raptors drops dramatically as light levels decrease. These and other visual properties underpin prey detection and pursuit and show how these birds’ vision is adapted to make them successful diurnal predators.

Author(s):  
S. M. Luria ◽  
Steven H. Ferris ◽  
Christine L. McKay ◽  
Jo Ann S. Kinney ◽  
Helen M. Paulson

The visual performance using five commercially avaible facemasks was compared. Measurements were made of visual fields, visual acuity, stereoacuity, hand-eye coordination, accuracy of distance estimates, and accuracy of size estimates at both near and far distances. In addition, the optical properties of the masks were measured and the susceptibility of each mask to fogging was tested. There were significant differences among the masks for every visual process tested. Some masks were superior for one purpose and inferior for another purpose. For example, the mask which had lenses designed to compensate for the optical distortions found under water improved size and distance estimates and hand-eye coordination, but degraded acuity and stereoacuity. The results were not expplained on the basis of differential susceptibility to fogging.


Diversity ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 400
Author(s):  
Simon Potier

Ecological diversity among diurnal birds of prey, or raptors, is highlighted regarding their sensory abilities. While raptors are believed to forage primarily using sight, the sensory demands of scavengers and predators differ, as reflected in their visual systems. Here, I have reviewed the visual specialisations of predatory and scavenging diurnal raptors, focusing on (1) the anatomy of the eye and (2) the use of vision in foraging. Predators have larger eyes than scavengers relative to their body mass, potentially highlighting the higher importance of vision in these species. Scavengers possess one centrally positioned fovea that allows for the detection of carrion at a distance. In addition to the central fovea, predators have a second, temporally positioned fovea that views the frontal visual field, possibly for prey capture. Spatial resolution does not differ between predators and scavengers. In contrast, the organisation of the visual fields reflects important divergences, with enhanced binocularity in predators opposed to an enlarged field of view in scavengers. Predators also have a larger blind spot above the head. The diversity of visual system specializations according to the foraging ecology displayed by these birds suggests a complex interplay between visual anatomy and ecology, often unrelatedly of phylogeny.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiao-ling Jiao ◽  
Jun Li ◽  
Zhe Yu ◽  
Ping-hui Wei ◽  
Hui Song

Abstract Background To compare visual performance between the iris-fixated phakic intraocular len (pIOL) and implantable collamer len (ICL) to correct high myopia. Methods Twenty-four eyes underwent iris-fixated pIOL implantation and 24 eyes underwent ICL implantation. At the 6-month follow-up, the best-corrected visual acuity (BCVA) and uncorrected distance visual acuity (UDVA) were compared between the iris-fixated pIOL and ICL groups. The objective scatter index (OSI), modulation transfer function (MTF) cutoff, and ocular aberrations were performed to evaluate postoperative visual quality between the two groups. Results No significant difference was found in UDVA, BCVA, and spherical equivalent between the iris-fixated pIOL and ICL groups (P > 0.05). Six months after surgery, the following values were significantly higher in the ICL group than in the iris-fixated pIOL group: MTF cutoff, strehl ratio and optical quality analysis system values at contrasts of 9 %, 20 %, and 100 % (P < 0.01). The OSI in the iris-fixated pIOL group was higher than in the ICL group 6 months after surgery (P < 0.01). All high-order aberrations were slightly more severe in the iris-fixated pIOL group than in the ICL group 6 months after surgery, although only trefoil (P = 0.023) differed significantly in this regard. Conclusions Both iris-fixated lenses and ICLs can provide good visual acuity. ICLs confer better visual performance in MTF-associated parameters and induce less intraocular light scattering than iris-fixated pIOLs.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Antonio Frattolillo ◽  
Filippo Tassi ◽  
Valentina Di Croce ◽  
Costantino Schiavi

Purpose. To study the effect of surgery on amblyopia and suppression associated with congenital cyclovertical strabismus. Methods. The fixation pattern was investigated with microperimetry before and soon after surgery in ten consecutive children operated for congenital superior oblique palsy at the S. Martino Hospital, Belluno, Italy, between September 2014 and December 2015. Changes in visual performance in terms of best-corrected visual acuity (BCVA) and stereopsis between the day before and one week after surgery were also evaluated. No other amblyopia treatment has been administered during the time study. Results. Surgical correction of the excyclodeviation in congenital SO palsy determined monocular and binocular sensory consequences: monocularly, in the cyclodeviated amblyopic eye, BCVA (0.46–0.03 LogMAR; p<0.0001) and the fixation pattern improved, as demonstrated by microperimetry examination. Binocularly, stereopsis improved or emerged while suppression at the Worth four-dot test disappeared. Conclusions. In the absence of further amblyopic factors such as coexisting constant vertical and/or horizontal deviation and anisometropia, the amblyopia encountered in congenital SO palsy may resolve soon after the surgical alignment. Therefore, it may be considered and defined “pseudoamblyopia.”


1993 ◽  
Vol 90 (23) ◽  
pp. 11142-11146 ◽  
Author(s):  
S Bisti ◽  
C Trimarchi

Prenatal unilateral enucleation in mammals causes an extensive anatomical reorganization of visual pathways. The remaining eye innervates the entire extent of visual subcortical and cortical areas. Electrophysiological recordings have shown that the retino-geniculate connections are retinotopically organized and geniculate neurones have normal receptive field properties. In area 17 all neurons respond to stimulation of the remaining eye and retinotopy, orientation columns, and direction selectivity are maintained. The only detectable change is a reduction in receptive field size. Are these changes reflected in the visual behavior? We studied visual performance in cats unilaterally enucleated 3 weeks before birth (gestational age at enucleation, 39-42 days). We tested behaviorally the development of visual acuity and, in the adult, the extension of the visual field and the contrast sensitivity. We found no difference between prenatal monocularly enucleated cats and controls in their ability to orient to targets in different positions of the visual field or in their visual acuity (at any age). The major difference between enucleated and control animals was in contrast sensitivity:prenatal enucleated cats present a loss in sensitivity for gratings of low spatial frequency (below 0.5 cycle per degree) as well as a slight increase in sensitivity at middle frequencies. We conclude that prenatal unilateral enucleation causes a selective change in the spatial performance of the remaining eye. We suggest that this change is the result of a reduction in the number of neurones with large receptive fields, possibly due to a severe impairment of the Y system.


2021 ◽  
pp. 1-11
Author(s):  
Visish M. Srinivasan ◽  
Phiroz E. Tarapore ◽  
Stefan W. Koester ◽  
Joshua S. Catapano ◽  
Caleb Rutledge ◽  
...  

OBJECTIVE Rare arteriovenous malformations (AVMs) of the optic apparatus account for < 1% of all AVMs. The authors conducted a systematic review of the literature for cases of optic apparatus AVMs and present 4 cases from their institution. The literature is summarized to describe preoperative characteristics, surgical technique, and treatment outcomes for these lesions. METHODS A comprehensive search of the English-language literature was performed in accordance with established Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to identify all published cases of AVM in the optic apparatus in the PubMed, Web of Science, and Cochrane databases. The authors also searched their prospective institutional database of vascular malformations for such cases. Data regarding the clinical and radiological presentation, visual acuity, visual fields, extent of resection, and postoperative outcomes were gathered. RESULTS Nine patients in the literature and 4 patients in the authors’ single-surgeon series who fit the inclusion criteria were identified. The median age at presentation was 29 years (range 8–39 years). Among these patients, 11 presented with visual disturbance, 9 with headache, and 1 with multiple prior subarachnoid hemorrhages; the AVM in 1 case was found incidentally. Four patients described prior symptoms of headache or visual disturbance consistent with sentinel events. Visual acuity was decreased from baseline in 10 patients, and 11 patients had visual field defects on formal visual field testing. The most common visual field defect was temporal hemianopia, found in one or both eyes in 7 patients. The optic chiasm was affected in 10 patients, the hypothalamus in 2 patients, the optic nerve (unilaterally) in 8 patients, and the optic tract in 2 patients. Six patients underwent gross-total resection; 6 patients underwent subtotal resection; and 1 patient underwent craniotomy, but no resection was attempted. Postoperatively, 9 of the patients had improved visual function, 1 had no change, and 3 had worse visual acuity. Eight patients demonstrated improved visual fields, 1 had no change, and 4 had narrowed fields. CONCLUSIONS AVMs of the optic apparatus are rare lesions. Although they reside in a highly eloquent region, surgical outcomes are generally good; the majority of patients will see improvement in their visual function postoperatively. Microsurgical technique is critical to the successful removal of these lesions, and preservation of function sometimes requires subtotal resection of the lesion.


1990 ◽  
Vol 148 (1) ◽  
pp. 353-365 ◽  
Author(s):  
U. EGGENREICH ◽  
K. KRAL

Visual fields and ommatidial angles of the compound eyes of Mantispa styriaca were determined using luminous pseudopupil and histological-anatomical techniques. The maximal horizontal overlap averaged 42.7° in femalesand 52.4° in males; females had only one overlap maximum, whereas males had two. In the dorsoventral direction, the binocular field had an overlap of 135.2° in the female and 142° in the male. In light-adapted eyes, optical acceptance angles reached values of 2.0°, and they reached 3.6° with dark adaptation; interommatidial angles were between 1.8° and 2.3°. The angles were very similar over the entire eye; no acute zone was found in the frontal part of the eye, as the large binocular overlap would suggest. The results are compared with those for the praying mantis: this animal is in no way related to Mantispa but resembles it in appearance and capture behaviour.


2021 ◽  
pp. 155982762110428
Author(s):  
Purva Jain ◽  
Jonathan T. Unkart ◽  
Fabio B. Daga ◽  
Linda Hill

Limited research exists examining self-perceived vision and driving ability among individuals with glaucoma, and this study assessed the relationship between glaucoma, visual field, and visual acuity with driving capability. 137 individuals with glaucoma and 75 healthy controls were asked to evaluate self-rated vision, self-perceived driving ability, and self-perceived distracted driving. Visual acuity and visual field measurements were also obtained. Multivariable linear regressions were run to test each visual measure with driving outcomes. The average age was 72.2 years, 57.3% were male, and 72.5% were White. There were significant associations for a one-point increase in visual field and quality of corrected vision (RR = 1.06; 95% CI = 1.03–1.10), day vision (RR = 1.05; 95% CI = 1.03–1.08), night vision (RR = 1.08; 95% CI = 1.05–1.13), visual acuity score and higher quality of corrected of vision (RR = .41; 95% CI = .22-.77), day vision (RR = .39; 95% CI=.22–.71), and night vision (RR = .41; 95% CI = .18–.94); visual acuity score and ability to drive safely compared to other drivers your age (RR = .53; 95% CI = .29–.96). Individuals with poorer visual acuity and visual fields rate their vision and ability to drive lower than those with better vision, and this information will allow clinicians to understand where to target interventions to enhance safe driving practices.


2019 ◽  
Vol 103 (11) ◽  
pp. 1566-1570 ◽  
Author(s):  
Xiangjia Zhu ◽  
Wenwen He ◽  
Shaohua Zhang ◽  
Xianfang Rong ◽  
Qi Fan ◽  
...  

PurposeTo evaluate whether the presence of dome-shaped macula (DSM) is a protective factor for visual acuity after cataract surgery in patients with high myopia.MethodsIncluded were 891 highly myopic cataract eyes (600 patients) that were examined by optical coherence tomography (OCT) through the central fovea and underwent cataract surgery in our hospital. DSM was defined as an inward bulge >50 µm in horizontal or vertical OCT sections. The incidences of various maculopathies were compared between eyes with and those without DSM. The influences of age, sex, eye laterality, axial length and DSM on postoperative visual acuity were evaluated by multivariate linear regression.ResultsOf the 891 eyes, 123 (13.8%) had DSM. There was a greater association of DSM with extrafoveal retinoschisis (RS) than with other vision-threatening complications such as foveal RS and choroidal neovascularisation. In addition to axial length and age, sex was associated with the presence of DSM (p=0.016). In bilateral high myopia, the incidence of DSM increased with the degree of anisometropia and was more common in the longer eye of patients with anisometropia. Younger age, male sex, shorter axial length and the presence of DSM were associated with better postoperative visual acuity in highly myopic cataract eyes (β=0.124, p=0.002; β=0.142, p<0.001; β=0.275, p<0.001 and β=−0.088, p=0.038, respectively).ConclusionAssociated with fewer visual threatening macular complications, presence of DSM may be a protective factor for visual function after cataract surgery in highly myopic eyes.


Sign in / Sign up

Export Citation Format

Share Document