scholarly journals The Interiors of Jupiter and Saturn

Author(s):  
Ravit Helled

Probing the interiors of the gaseous giant planets in our solar system is not an easy task. It requires a set of accurate measurements combined with theoretical models that are used to infer the planetary composition and its depth dependence. The masses of Jupiter and Saturn are 317.83 and 95.16 Earth masses (M⊕), respectively, and since a few decades, it has been known that they mostly consist of hydrogen and helium. The mass of heavy elements (all elements heavier than helium) is not well determined, nor are their distribution within the planets. While the heavy elements are not the dominating materials inside Jupiter and Saturn, they are the key to understanding the planets’ formation and evolutionary histories. The planetary internal structure is inferred from theoretical models that fit the available observational constraints by using theoretical equations of states (EOSs) for hydrogen, helium, their mixtures, and heavier elements (typically rocks and/or ices). However, there is no unique solution for determining the planetary structure and the results depend on the used EOSs as well as the model assumptions imposed by the modeler. Major model assumptions that can affect the derived internal structure include the number of layers, the heat transport mechanism within the planet (and its entropy), the nature of the core (compact vs. diluted), and the location (pressure) of separation between the two envelopes. Alternative structure models assume a less distinct division between the layers and /or a non-homogenous distribution of the heavy elements. The fact that the behavior of hydrogen at high pressures and temperatures is not perfectly known and that helium may separate from hydrogen at the deep interior add sources of uncertainty to structure models. In the 21st century, with accurate measurements of the gravitational fields of Jupiter and Saturn from the Juno and Cassini missions, structure models can be further constrained. At the same time, these measurements introduce new challenges for planetary modelers.

2020 ◽  
Author(s):  
Jack Lissauer ◽  
Peter Bodenheimer ◽  
David Stevenson ◽  
Gennaro D'Angelo

<p>We present results of simulations of the growth of giant planets that incorporate the mixing of light gases with denser material that enters the planet as solids. We find that heavy compounds and gas begin to intimately mix when the planet is quite small, and substantial mixing occurs when the planet becomes roughly as massive as Earth, because even incoming silicates can then fully vaporize if they arrive in the form of planetesimals or smaller bodies. Nonetheless, most of the icy and rocky material accreted by a giant planet settles to a region in which vaporized ice and rock are well-mixed until the growing planet is several times as massive as Earth. Subsequently, planetesimals break up in a region that is too cool for all the silicates to vaporize, so the silicates continue to sink, but the water remains at higher altitudes. As the planet continues to grow, silicates vaporize farther out. Because the mean molecular weight decreases rapidly outward at many radii, some of the radially inhomogeneities in composition produced during the accretion era are able to survive for billions of years. After 4.57 Gyr, our model Jupiter retains compositional gradients; from the inside outwards one finds: (i) an inner core, dominantly composed of heavy elements; (ii) a density-gradient region, containing the majority of the planet's heavy elements, where H and He increase in abundance with height, reaching ~90% mass fraction at 30% of Jupiter's radius, with rocky materials enhanced relative to ices in the lower part of this gradient region and the composition transitioning to ices enhanced relative to rock at higher altitudes; (iv) a large, uniform-composition region (we do not account for He immiscibility), enriched relative to protosolar in heavy elements, especially ices, that contains the bulk of the planet's mass; and (v) an outer region where condensation of many constituents occurs. This radial compositional profile has heavy elements more broadly distributed within the planet than predicted by classical Jupiter-formation models. NASA’s Juno spacecraft's measurements of Jupiter's gravity field also implies less concentration of heavy elements near the center of the planet than classical theoretical models. However, the preferred dilution of the core found in Juno-constrained gravity models is substantially larger than what is suggested by our accretion models, requiring some modification in the heavy element distribution. The compositional gradients in the region containing the bulk of the planet’s heavy elements prevent convection, both in our models and the models that fit current gravity, probably resulting in a hot deep interior where much of the energy from the early stages of the planet's accretion remains trapped.</p>


2019 ◽  
Vol 116 (39) ◽  
pp. 19324-19329 ◽  
Author(s):  
Rajkrishna Dutta ◽  
Eran Greenberg ◽  
Vitali B. Prakapenka ◽  
Thomas S. Duffy

Neighborite, NaMgF3, is used as a model system for understanding phase transitions in ABX3 systems (e.g., MgSiO3) at high pressures. Here we report diamond anvil cell experiments that identify the following phases in NaMgF3 with compression to 162 GPa: NaMgF3 (perovskite) → NaMgF3 (post-perovskite) → NaMgF3 (Sb2S3-type) → NaF (B2-type) + NaMg2F5 (P21/c) → NaF (B2) + MgF2 (cotunnite-type). Our results demonstrate the existence of an Sb2S3-type post-post-perovskite ABX3 phase. We also experimentally demonstrate the formation of the P21/c AB2X5 phase which has been proposed theoretically to be a common high-pressure phase in ABX3 systems. Our study provides an experimental observation of the full sequence of phase transitions from perovskite to post-perovskite to post-post-perovskite followed by 2-stage breakdown to binary compounds. Notably, a similar sequence of transitions is predicted to occur in MgSiO3 at ultrahigh pressures, where it has implications for the mineralogy and dynamics in the deep interior of large, rocky extrasolar planets.


2021 ◽  
Author(s):  
Meryem Berrada ◽  
Richard Secco ◽  
Wenjun Yong

<p>Recent theoretical studies have tried to constrain Mercury’s internal structure and composition using thermal evolution models. The presence of a thermally stratified layer of Fe-S at the top of an Fe-Si core has been suggested, which implies a sub-adiabatic heat flow on the core side of the CMB. In this work, the adiabatic heat flow at the top of the core was estimated using the electronic component of thermal conductivity (k<sub>el</sub>), a lower bound for thermal conductivity. Direct measurements of electrical resistivity (ρ) of Fe-8.5wt%Si at core conditions can be related to k<sub>el</sub> using the Wiedemann-Franz law. Measurements were carried out in a 3000 ton multi-anvil press using a 4-wire method. The integrity of the samples at high pressures and temperatures was confirmed with electron-microprobe analysis of quenched samples at various conditions. Unexpected behaviour at low temperatures between 6-8 GPa may indicate an undocumented phase transition. Measurements of ρ at melting seem to remain constant at 127 µΩ·cm from 10-24 GPa, on both the solid and liquid side of the melting boundary. The adiabatic heat flow at the core side of Mercury’s core-mantle boundary is estimated between 21.8-29.5 mWm<sup>-2</sup>, considerably higher than most models of an Fe-S or Fe-Si core yet similar to models of an Fe core. Comparing these results with thermal evolution models suggests that Mercury’s dynamo remained thermally driven up to 0.08-0.22 Gyr, at which point the core became sub-adiabatic and stimulated a change from dominant thermal convection to dominant chemical convection arising from the growth of an inner core. Simply considering the internal structure of Mercury, these results support the capture of Mercury into a 3:2 resonance orbit during the thermally driven era of the dynamo.</p>


Author(s):  
Christoph Steinhausen ◽  
Grazia Lamanna ◽  
Bernhard Weigand ◽  
Rolf Stierle ◽  
Joachim Groß ◽  
...  

The disintegration process of liquid fuel within combustion chambers is one of the most important parameters forefficient and stable combustion. Especially for high pressures exceeding the critical value of the injected fluids the mixing processes are not fully understood yet. Recently, different theoretical macroscopic models have been introduced to understand breakdown of the classical two phase regime and predict the transition from evaporation to a diffuse-mixing process. In order to gain deeper insight into the physical processes of this transition, a parametric study of free-falling n-pentane droplets in an inert nitrogen atmosphere is presented. Atmospheric conditions varied systematically from sub- to supercritical values with respect to the fluid properties. An overlay of a diffuse lighted image with a shadowgram directly in the optical setup (front lighted shadowgraphy) was applied to simultaneously detect the presence of a material surface of the droplet as well as changes in density gradients in the surrounding atmosphere. The experimental investigation illustrates, that the presence of a material surface cannot be shown by a direct shadowgram. However, reflections and refractions caused by diffuse ambient illumination are able to indicate the presence of a material surface. In case of the supercritical droplet injections in this study, front lighted shadowgraphy clearly revealed the presence of a material surface, even when the pre-heated droplets are released into a supercritical atmosphere. This detection of the droplet interface indicates, that the droplet remains subcritical in the region of interest, even though it is injected into a supercritical atmosphere. Based on the adiabatic mixing assumption recent Raman-scattering results in the wake of the droplet are re-evaluated to compute the temperature distribution. Presented experimental findings as well as the re-evaluation of recent Raman scattering results are compared to thermodynamic models to predict the onset of diffuse-mixing and supercritical disintegration of the droplet. Additionally, a one dimensional evaporation model is used to evaluate the validity of the adiabatic mixing assumption in the estimation of the droplet temperature. The presented findings contribute to the understanding of recent theoretical models for prediction of spray and droplet disintegration and the onset of diffuse-mixing processes.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4635


2021 ◽  
Author(s):  
Julius Kunz ◽  
Christof Kneisel

<p>The Mackenzie-Delta region is known for widespread permafrost and the association of different landforms, which are characteristic of a periglacial landscape development. Especially the density of closed-system pingos is nowhere on earth higher than in the area of the Tuktoyaktuk Peninsula. This type of pingos is common only in the continuous permafrost zone and is very sensitive to changing thermal conditions. In this study, we investigated the surface and subsurface conditions in the area of such a closed-system Pingo near Parsons Lake in the southern part of the Tuktoyaktuk Peninsula to study its internal structure and evolutional state. Therefore, we used a combined approach of electrical resistivity tomography (ERT), ground-penetrating radar (GPR) and manual frost probing. In addition, a high-resolution digital elevation model and an orthophoto were generated using in situ drone acquisitions. These enabled a detailed and areawide mapping of surface characteristics (e.g. vegetation height or type) and should contribute to the investigation of linkages between surface and subsurface characteristics.</p><p>Such a linkage could be observed comparing the mapped vegetation type and heights with active layer depths derived from manual frost probing and GPR measurements. Both parameters show a significant zonation in the area of the pingo and its surrounding. In addition, the results of the quasi three-dimensional ERT measurements could deliver new insights into the three-dimensional internal structure of the pingo and a massive ice core could be detected. However, the shape as well as the position of the massive ice core in relation to the elevated surface of the pingo differ from the previous theory of closed-system pingo formation and therefore raises some questions. Also the existence of a talik could be confirmed, but its position beside the ice core within the eastern flank of the pingo and not below the massive ice core also differs from the theoretical models and should be discussed.</p>


2020 ◽  
Vol 493 (4) ◽  
pp. 4936-4944
Author(s):  
M J P Wijngaarden ◽  
Wynn C G Ho ◽  
Philip Chang ◽  
Dany Page ◽  
Rudy Wijnands ◽  
...  

ABSTRACT Valuable information about the neutron star (NS) interior can be obtained by comparing observations of thermal radiation from a cooling NS crust with theoretical models. Nuclear burning of lighter elements that diffuse to deeper layers of the envelope can alter the relation between surface and interior temperatures and can change the chemical composition over time. We calculate new temperature relations and consider two effects of diffusive nuclear burning (DNB) for H–C envelopes. First, we consider the effect of a changing envelope composition and find that hydrogen is consumed on short time-scales and our temperature evolution simulations correspond to those of a hydrogen-poor envelope within ∼100 d. The transition from a hydrogen-rich to a hydrogen-poor envelope is potentially observable in accreting NS systems as an additional initial decline in surface temperature at early times after the outburst. Second, we find that DNB can produce a non-negligible heat flux, such that the total luminosity can be dominated by DNB in the envelope rather than heat from the deep interior. However, without continual accretion, heating by DNB in H–C envelopes is only relevant for <1–80 d after the end of an accretion outburst, as the amount of light elements is rapidly depleted. Comparison to crust cooling data shows that DNB does not remove the need for an additional shallow heating source. We conclude that solving the time-dependent equations of the burning region in the envelope self-consistently in thermal evolution models instead of using static temperature relations would be valuable in future cooling studies.


2018 ◽  
Vol 14 (S346) ◽  
pp. 365-379 ◽  
Author(s):  
I. F. Mirabel

AbstractTheoretical models and observations suggest that primordial Stellar Black Holes (Pop-III-BHs) were prolifically formed in HMXBs, which are powerful relativistic jet sources of synchrotron radiation called Microquasars (MQs).Large populations of BH-HMXB-MQs at cosmic dawn produce a smooth synchrotron cosmic radio background (CRB) that could account for the excess amplitude of atomic hydrogen absorption at z∼17, recently reported by EDGES.BH-HMXB-MQs at cosmic dawn precede supernovae, neutron stars and dust. BH-HMXB-MQs promptly inject into the IGM hard X-rays and relativistic jets, which overtake the slowly expanding HII regions ionized by progenitor Pop-III stars, heating and partially ionizing the IGM over larger distance scales.BH-HMXBs are channels for the formation of Binary-Black-Holes (BBHs). The large masses of BBHs detected by gravitational waves, relative to the masses of BHs detected by X-rays, and the high rates of BBH-mergers, are consistent with high formation rates of BH-HMXBs and BBHs in the early universe.


1988 ◽  
Vol 123 ◽  
pp. 133-136
Author(s):  
Hiromoto Shibahashi

By using the quantization rule based on the WKB asymptotic method, we present an integral equation to infer the form of the acoustic potential of a fixed ℓ as a function of the acoustic length. Since we analyze the acoustic potential itself by taking account of some factors other than the sound velocity and we can analyze the radial modes by this scheme as well as nonradial modes, this method improves the accuracy and effectiveness of the inverse problem to infer the internal structure of the Sun, in particular, the deep interior of the Sun.


The aim of this review is to bring together and relate recent progress in three subjects - the internal structure of the Earth, the behaviour of materials at very high pressures and the dynamical properties of the planets. Knowledge of the internal structure of the Earth has been advanced in recent years, particularly by observations of free oscillations of the whole Earth excited by the very largest earthquakes; as a consequence, it is clear that K. E. Bullen’s hypothesis that bulk modulus is a smooth function of pressure irrespective of composition is close to the truth for the Earth. Understanding of the behaviour of materials at very high pressure has increased as a result both of experiments on the propagation of shock waves and of theoretical investigations along a number of lines and it can now be seen that Bullen’s hypothesis is not true irrespective of chemical composition and crystal structure but that it happens to apply to the Earth because of particular circumstances. Studies of the orbits of artificial satellites and space probes have led to better knowledge of the dynamics of the Moon, Mars and Venus, and there have also been recent improvements in the traditional studies of Uranus and Neptune. Our knowledge of the dynamics of the planets is on the whole rather restricted, and Bullen’s hypothesis only applies directly to the Moon (for which the application is trivial) and possibly to Mars; the dynamical properties do none the less set fairly restrictive limits to the models that can be constructed for other planets. It would be possible for all planets to have cores of similar composition to the Earth ’s, surrounded by mantles of different sorts, silicates for the terrestrial planets and mostly hydrogen for Jupiter, Saturn, Uranus and Neptune.


Sign in / Sign up

Export Citation Format

Share Document