Mixing of Condensable Constituents with H/He During Formation of the Jupiter

2020 ◽  
Author(s):  
Jack Lissauer ◽  
Peter Bodenheimer ◽  
David Stevenson ◽  
Gennaro D'Angelo

<p>We present results of simulations of the growth of giant planets that incorporate the mixing of light gases with denser material that enters the planet as solids. We find that heavy compounds and gas begin to intimately mix when the planet is quite small, and substantial mixing occurs when the planet becomes roughly as massive as Earth, because even incoming silicates can then fully vaporize if they arrive in the form of planetesimals or smaller bodies. Nonetheless, most of the icy and rocky material accreted by a giant planet settles to a region in which vaporized ice and rock are well-mixed until the growing planet is several times as massive as Earth. Subsequently, planetesimals break up in a region that is too cool for all the silicates to vaporize, so the silicates continue to sink, but the water remains at higher altitudes. As the planet continues to grow, silicates vaporize farther out. Because the mean molecular weight decreases rapidly outward at many radii, some of the radially inhomogeneities in composition produced during the accretion era are able to survive for billions of years. After 4.57 Gyr, our model Jupiter retains compositional gradients; from the inside outwards one finds: (i) an inner core, dominantly composed of heavy elements; (ii) a density-gradient region, containing the majority of the planet's heavy elements, where H and He increase in abundance with height, reaching ~90% mass fraction at 30% of Jupiter's radius, with rocky materials enhanced relative to ices in the lower part of this gradient region and the composition transitioning to ices enhanced relative to rock at higher altitudes; (iv) a large, uniform-composition region (we do not account for He immiscibility), enriched relative to protosolar in heavy elements, especially ices, that contains the bulk of the planet's mass; and (v) an outer region where condensation of many constituents occurs. This radial compositional profile has heavy elements more broadly distributed within the planet than predicted by classical Jupiter-formation models. NASA’s Juno spacecraft's measurements of Jupiter's gravity field also implies less concentration of heavy elements near the center of the planet than classical theoretical models. However, the preferred dilution of the core found in Juno-constrained gravity models is substantially larger than what is suggested by our accretion models, requiring some modification in the heavy element distribution. The compositional gradients in the region containing the bulk of the planet’s heavy elements prevent convection, both in our models and the models that fit current gravity, probably resulting in a hot deep interior where much of the energy from the early stages of the planet's accretion remains trapped.</p>

Author(s):  
Ravit Helled

Probing the interiors of the gaseous giant planets in our solar system is not an easy task. It requires a set of accurate measurements combined with theoretical models that are used to infer the planetary composition and its depth dependence. The masses of Jupiter and Saturn are 317.83 and 95.16 Earth masses (M⊕), respectively, and since a few decades, it has been known that they mostly consist of hydrogen and helium. The mass of heavy elements (all elements heavier than helium) is not well determined, nor are their distribution within the planets. While the heavy elements are not the dominating materials inside Jupiter and Saturn, they are the key to understanding the planets’ formation and evolutionary histories. The planetary internal structure is inferred from theoretical models that fit the available observational constraints by using theoretical equations of states (EOSs) for hydrogen, helium, their mixtures, and heavier elements (typically rocks and/or ices). However, there is no unique solution for determining the planetary structure and the results depend on the used EOSs as well as the model assumptions imposed by the modeler. Major model assumptions that can affect the derived internal structure include the number of layers, the heat transport mechanism within the planet (and its entropy), the nature of the core (compact vs. diluted), and the location (pressure) of separation between the two envelopes. Alternative structure models assume a less distinct division between the layers and /or a non-homogenous distribution of the heavy elements. The fact that the behavior of hydrogen at high pressures and temperatures is not perfectly known and that helium may separate from hydrogen at the deep interior add sources of uncertainty to structure models. In the 21st century, with accurate measurements of the gravitational fields of Jupiter and Saturn from the Juno and Cassini missions, structure models can be further constrained. At the same time, these measurements introduce new challenges for planetary modelers.


Author(s):  
Noriyuki Kuwano ◽  
Masaru Itakura ◽  
Kensuke Oki

Pd-Ce alloys exhibit various anomalies in physical properties due to mixed valences of Ce, and the anomalies are thought to be strongly related with the crystal structures. Since Pd and Ce are both heavy elements, relative magnitudes of (fcc-fpd) are so small compared with <f> that superlattice reflections, even if any, sometimes cannot be detected in conventional x-ray powder patterns, where fee and fpd are atomic scattering factors of Ce and Pd, and <f> the mean value in the crystal. However, superlattices in Pd-Ce alloys can be analyzed by electron microscopy, thanks to the high detectability of electron diffraction. In this work, we investigated modulated superstructures in alloys with 12.5 and 15.0 at.%Ce.Ingots of Pd-Ce alloys were prepared in an arc furnace under atmosphere of ultra high purity argon. The disc specimens cut out from the ingots were heat-treated in vacuum and electrothinned to electron transparency by a jet method.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Dana Alina Magdas ◽  
Adriana Dehelean ◽  
Romulus Puscas

H, C, O stable isotope ratios and the content of some heavy elements of 31 Romanian single-strength organic apple juices collected from four Transylvanian areas are discussed in this study. The aim of this study was to measure the2H/1H,18O/16O,13C/12C ratios of these juices and their elemental profile and to establish a database of authentic values to be used for adulteration and authenticity testing. Our results have shown mean values ofδ18O=-4.2‰andδDδ-46.5‰, respectively, for apples from Transylvania and at the same time the mean value ofδ13C=-28.2‰. The content of Cd, Pb, U, Zn, As was below the acceptable limits stipulated in US-EPA standard for drinking water. Cu and Cr limits exceeded for one single juice; Ni content for some apple juices from Maramures, Alba, and Cluj was higher than the acceptable value.


Author(s):  
Mounir Ibrahim ◽  
Terry Sanders ◽  
Douglas Darling ◽  
Michelle Zaller

To imitate resonances that might occur in the fuel delivery system of gas turbine combustors, the incoming liquid streams of two pressure swirl nozzles were perturbed using a piezoelectric driver. Frequencies of perturbations examined were from 3 to 20 kHz, and water was used as the test fluid. A video camera and a Phase Doppler Particle Analyzer (PDPA) were used to study the effect of perturbations on the mean flow quantities of the sprays. Various lighting arrangements were used for the video photography: back lighting, front lighting, a strobe synchronized with the input to the piezoelectric, and a laser sheet oriented along the midplane of the sprays. The study showed that the piezoelectric drive had an effect an the spray system at discrete frequencies. At these particular frequencies, by increasing the input voltage, it was found that the piezoelectric drive affected the atomization in the following ways: (1) the mean flow rate decreased, (2) the spray cone angle decreased, (3) the break up length decreased, (4) the peak of the spatial distribution of the mean droplet size decreased, and (5) the mean droplet sizes and velocities increased near the spray center line and decreased in the outer region of the spray. A hysteresis effect of the drive frequency on the spray cone angle was observed. The results indicated that more fundamental research is needed to gain an in-depth understanding of the physical processes induced in the spray by the piezoelectric drive.


2014 ◽  
Vol 142 (8) ◽  
pp. 2838-2859 ◽  
Author(s):  
Buo-Fu Chen ◽  
Russell L. Elsberry ◽  
Cheng-Shang Lee

Abstract Outer mesoscale convective systems (OMCSs) are long-lasting, heavy rainfall events separate from the inner-core rainfall that have previously been shown to occur in 22% of western North Pacific tropical cyclones (TCs). Environmental conditions accompanying the development of 62 OMCSs are contrasted with the conditions in TCs that do not include an OMCS. The development, kinematic structure, and maintenance mechanisms of an OMCS that occurred to the southwest of Typhoon Fengshen (2008) are studied with Weather Research and Forecasting Model simulations. Quick Scatterometer (QuikSCAT) observations and the simulations indicate the low-level TC circulation was deflected around the Luzon terrain and caused an elongated, north–south moisture band to be displaced to the west such that the OMCS develops in the outer region of Fengshen rather than spiraling into the center. Strong northeasterly vertical wind shear contributed to frictional convergence in the boundary layer, and then the large moisture flux convergence in this moisture band led to the downstream development of the OMCS when the band interacted with the monsoon flow. As the OMCS developed in the region of low-level monsoon westerlies and midlevel northerlies associated with the outer circulation of Fengshen, the characteristic structure of a rear-fed inflow with a leading stratiform rain area in the cross-line direction (toward the south) was established. A cold pool (Δθ &lt; −3 K) associated with the large stratiform precipitation region led to continuous formation of new cells at the leading edge of the cold pool, which contributed to the long duration of the OMCS.


2020 ◽  
Vol 493 (4) ◽  
pp. 4936-4944
Author(s):  
M J P Wijngaarden ◽  
Wynn C G Ho ◽  
Philip Chang ◽  
Dany Page ◽  
Rudy Wijnands ◽  
...  

ABSTRACT Valuable information about the neutron star (NS) interior can be obtained by comparing observations of thermal radiation from a cooling NS crust with theoretical models. Nuclear burning of lighter elements that diffuse to deeper layers of the envelope can alter the relation between surface and interior temperatures and can change the chemical composition over time. We calculate new temperature relations and consider two effects of diffusive nuclear burning (DNB) for H–C envelopes. First, we consider the effect of a changing envelope composition and find that hydrogen is consumed on short time-scales and our temperature evolution simulations correspond to those of a hydrogen-poor envelope within ∼100 d. The transition from a hydrogen-rich to a hydrogen-poor envelope is potentially observable in accreting NS systems as an additional initial decline in surface temperature at early times after the outburst. Second, we find that DNB can produce a non-negligible heat flux, such that the total luminosity can be dominated by DNB in the envelope rather than heat from the deep interior. However, without continual accretion, heating by DNB in H–C envelopes is only relevant for &lt;1–80 d after the end of an accretion outburst, as the amount of light elements is rapidly depleted. Comparison to crust cooling data shows that DNB does not remove the need for an additional shallow heating source. We conclude that solving the time-dependent equations of the burning region in the envelope self-consistently in thermal evolution models instead of using static temperature relations would be valuable in future cooling studies.


2011 ◽  
Vol 681 ◽  
pp. 462-498 ◽  
Author(s):  
DAN LIBERZON ◽  
LEV SHEMER

Despite a significant progress and numerous publications over the last few decades a comprehensive understanding of the process of waves' excitation by wind still has not been achieved. The main goal of the present work was to provide as comprehensive as possible set of experimental data that can be quantitatively compared with theoretical models. Measurements at various air flow rates and at numerous fetches were carried out in a small scale, closed-loop, 5 m long wind wave flume. Mean airflow velocity and fluctuations of the static pressure were measured at 38 vertical locations above the mean water surface simultaneously with determination of instantaneous water surface elevations by wave gauges. Instantaneous fluctuations of two velocity components were recorded for all vertical locations at a single fetch. The water surface drift velocity was determined by the particle tracking velocimetry (PTV) method. Evaluation of spatial growth rates of waves at various frequencies was performed using wave gauge records at various fetches. Phase relations between various signals were established by cross-spectral analysis. Waves' celerities and pressure fluctuation phase lags relative to the surface elevation were determined. Pressure values at the water surface were determined by extrapolating the measured vertical profile of pressure fluctuations to the mean water level and used to calculate the form drag and consequently the energy transfer rates from wind to waves. Directly obtained spatial growth rates were compared with those obtained from energy transfer calculations, as well as with previously available data.


2017 ◽  
Vol 35 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Shao Dong Zhang ◽  
Chun Ming Huang ◽  
Kai Ming Huang ◽  
Ye Hui Zhang ◽  
Yun Gong ◽  
...  

Abstract. By applying 12-year (1998–2009) radiosonde data over a midlatitude station, we studied the vertical wavenumber spectra of three-dimensional wind fluctuations. The horizontal wind spectra in the lower stratosphere coincide well with the well-known universal spectra, with mean spectral slopes of −2.91 ± 0.09 and −2.99 ± 0.09 for the zonal and meridional wind spectra, respectively, while the mean slopes in the troposphere are −2.64 ± 0.07 and −2.70  ±  0.06, respectively, which are systematically less negative than the canonical slope of −3. In both the troposphere and lower stratosphere, the spectral amplitudes (slopes) of the horizontal wind spectra are larger (less negative) in winter, and they are larger (less negative) in the troposphere than in the lower stratosphere. Moreover, we present the first statistical results of vertical wind fluctuation spectra, which revealed a very shallow spectral structure, with mean slopes of −0.58 ± 0.06 and −0.23 ± 0.05 in the troposphere and lower stratosphere, respectively. Such a shallow vertical wind fluctuation spectrum is considerably robust. Different from the horizontal wind spectrum, the slopes of the vertical wind spectra in both the troposphere and lower stratosphere are less negative in summer. The height variation of vertical wind spectrum amplitude is also different from that of the horizontal wind spectrum, with a larger amplitude in the lower stratosphere. These evident differences between the horizontal and vertical wind spectra strongly suggest they should obey different spectral laws. Quantitative comparisons with various theoretical models show that no existing spectral theories can comprehensively explain the observed three-dimensional wind spectra, indicating that the spectral features of atmospheric fluctuations are far from fully understood.


2020 ◽  
Vol 636 ◽  
pp. A101 ◽  
Author(s):  
P. M. Pizzochero ◽  
A. Montoli ◽  
M. Antonelli

During the spin-up phase of a large pulsar glitch – a sudden decrease of the rotational period of a neutron star – the angular velocity of the star may overshoot, namely reach values greater than that observed for the new post-glitch equilibrium. These transient phenomena are expected on the basis of theoretical models for pulsar internal dynamics, and their observation has the potential to provide an important diagnostic for glitch modelling. In this article, we present a simple criterion to assess the presence of an overshoot, based on the minimal analytical model that is able to reproduce an overshooting spin-up. We employed it to fit the data of the 2016 glitch of the Vela pulsar, obtaining estimates of the fractional moments of inertia of the internal superfluid components involved in the glitch, of the rise and decay timescales of the overshoot, and of the mutual friction parameters between the superfluid components and the normal one. We studied the cases with and without strong entrainment in the crust: in the former, we found an indication of a large inner core strongly coupled to the observable component, and of a reservoir of angular momentum extending into the core to densities below nuclear saturation; while in the latter, a large reservoir extending above nuclear saturation and a standard normal component without inner core were found.


1965 ◽  
Vol 22 (2) ◽  
pp. 285-304 ◽  
Author(s):  
A. E. Perry ◽  
P. N. Joubert

The purpose of this paper is to provide some possible explantions for certain observed phenomena associated with the mean-velocity profile of a turbulent boundary layer which undergoes a rapid yawing. For the cases considered the yawing is caused by an obstruction attached to the wall upon which the boundary layer is developing. Only incompressible flow is considered.§1 of the paper is concerned with the outer region of the boundary layer and deals with a phenomenon observed by Johnston (1960) who described it with his triangular model for the polar plot of the velocity distribution. This was also observed by Hornung & Joubert (1963). It is shown here by a first-approximation analysis that such a behaviour is mainly a consequence of the geometry of the apparatus used. The analysis also indicates that, for these geometries, the outer part of the boundary-layer profile can be described by a single vector-similarity defect law rather than the vector ‘wall-wake’ model proposed by Coles (1956). The former model agrees well with the experimental results of Hornung & Joubert.In §2, the flow close to the wall is considered. Treating this region as an equilibrium layer and using similarity arguments, a three-dimensional version of the ‘law of the wall’ is derived. This relates the mean-velocity-vector distribution with the pressure-gradient vector and wall-shear-stress vector and explains how the profile skews near the wall. The theory is compared with Hornung & Joubert's experimental results. However at this stage the results are inconclusive because of the lack of a sufficient number of measured quantities.


Sign in / Sign up

Export Citation Format

Share Document