scholarly journals Perspective: Human Milk Oligosaccharides: Fuel for Childhood Obesity Prevention?

Author(s):  
Sarah E Maessen ◽  
José G B Derraik ◽  
Aristea Binia ◽  
Wayne S Cutfield

ABSTRACT Obesity begins early but has lifelong consequences for health and well-being. Breastfeeding is thought to be preventive against obesity, but the extent and cause of this association are not well understood. Human milk oligosaccharides (HMOs) are abundant in human milk and not present in commercially available infant formula. These complex sugars are thought to contribute to the development of the infant gut microbiome and immune system. Recently, they have been investigated as a potential link between breastfeeding and lower obesity risk. So far, only a few human studies have examined HMO composition of human milk in association with the infant′s concurrent anthropometry or subsequent growth in infancy, with conflicting results. However, HMOs have been shown to modulate the gut microbiome profile by selectively promoting the growth of specific bacteria, such as bifidobacteria. Moreover, there are differences in the gut microbiome of lean and obese humans, and there is some evidence that the early composition of the gut microbiome can predict later obesity. Although it seems that HMOs might have a role in infant growth and adiposity, there is not enough consistent evidence to understand their potential role in obesity prevention. More data, particularly from large or longitudinal studies, are needed to clarify the functions of HMOs and other breast-milk components in determining long-term health.

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Sasirekha Ramani ◽  
Christopher J. Stewart ◽  
Daniel R. Laucirica ◽  
Nadim J. Ajami ◽  
Bianca Robertson ◽  
...  

2021 ◽  
pp. 110884
Author(s):  
Ravindra Pal Singh ◽  
Jayashree Niharika ◽  
Kanthi Kiran Kondepudi ◽  
Mahendra Bishnoi ◽  
Jagan Mohan Rao Tingirikari

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Yaqiang Bai ◽  
Jia Tao ◽  
Jiaorui Zhou ◽  
Qingjie Fan ◽  
Man Liu ◽  
...  

ABSTRACT The milk glycobiome has a significant impact on the gut microbiota of infants, which plays a pivotal role in health and development. Fucosylated human milk oligosaccharides (HMOs) and N-glycans on milk proteins are beneficial for the development of healthy gut microbiota, and the fucosylation levels of these glycans can be affected by the maternal fucosyltransferase 2 gene (FUT2). Here, we present results of longitudinal research on paired milk and stool samples from 56 Chinese mothers (CMs) and their breast-fed children. Changes of HMOs and fucosylated N-glycans in milk of CMs at different lactation stages were detected, which allowed characterization of the major differences in milk glycans and consequential effects on the gut microbiome of infants according to maternal FUT2 status. Significant differences in the abundance of total and fucosylated HMOs between secretor and nonsecretor CMs were noted, especially during early lactation. Despite a tendency toward decreasing milk protein concentrations, the fucosylation levels of milk N-glycans increased during late lactation. The changes in the levels of fucosylated HMOs and milk N-glycans were highly correlated with the growth of Bifidobacterium spp. and Lactobacillus spp. in the gut of infants during early and later lactation, respectively. Enriched expression of genes encoding glycoside hydrolases, glycosyl transferases, ATP-binding cassette (ABC) transporters, and permeases in infants fed by secretor CMs contributed to the promotion of these bacteria in infants. Our data highlight the important role of fucosylated milk glycans in shaping the gut microbiome of infants and provide a solid foundation for development of “personalized” nutrition for Chinese infants. IMPORTANCE Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1105 ◽  
Author(s):  
Magdalena Orczyk-Pawiłowicz ◽  
Jolanta Lis-Kuberka

Apart from optimal nutritional value, human milk is the feeding strategy to support the immature immunological system of developing newborns and infants. The most beneficial dietary carbohydrate components of breast milk are human milk oligosaccharides (HMOs) and glycoproteins (HMGs), involved in both specific and nonspecific immunity. Fucosylated oligosaccharides represent the largest fraction of human milk oligosaccharides, with the simplest and the most abundant being 2′-fucosyllactose (2′-FL). Fucosylated oligosaccharides, as well as glycans of glycoproteins, as beneficial dietary sugars, elicit anti-adhesive properties against fucose-dependent pathogens, and on the other hand are crucial for growth and metabolism of beneficial bacteria, and in this aspect participate in shaping a healthy microbiome. Well-documented secretor status related differences in the fucosylation profile of HMOs and HMGs may play a key but underestimated role in assessment of susceptibility to fucose-dependent pathogen infections, with a potential impact on applied clinical procedures. Nevertheless, due to genetic factors, about 20% of mothers do not provide their infants with beneficial dietary carbohydrates such as 2′-FL and other α1,2-fucosylated oligosaccharides and glycans of glycoproteins, despite breastfeeding them. The lack of such structures may have important implications for a wide range of aspects of infant well-being and healthcare. In light of the above, some artificial mixtures used in infant nutrition are supplemented with 2′-FL to more closely approximate the unique composition of maternal milk, including dietary-derived fucosylated oligosaccharides and glycoproteins.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3572
Author(s):  
Sylvia Docq ◽  
Marcia Spoelder ◽  
Wendan Wang ◽  
Judith R. Homberg

Over the last few years, research indicated that Human Milk Oligosaccharides (HMOs) may serve to enhance cognition during development. HMOs hereby provide an exciting avenue in the understanding of the molecular mechanisms that contribute to cognitive development. Therefore, this review aims to summarize the reported observations regarding the effects of HMOs on memory and cognition in rats, mice and piglets. Our main findings illustrate that the administration of fucosylated (single or combined with Lacto-N-neoTetraose (LNnT) and other oligosaccharides) and sialylated HMOs results in marked improvements in spatial memory and an accelerated learning rate in operant tasks. Such beneficial effects of HMOs on cognition already become apparent during infancy, especially when the behavioural tasks are cognitively more demanding. When animals age, its effects become increasingly more apparent in simpler tasks as well. Furthermore, the combination of HMOs with other oligosaccharides yields different effects on memory performance as opposed to single HMO administration. In addition, an enhanced hippocampal long-term potentiation (LTP) response both at a young and at a mature age are reported as well. These results point towards the possibility that HMOs administered either in singular or combination forms have long-lasting, beneficial effects on memory and cognition in mammals.


Sign in / Sign up

Export Citation Format

Share Document