scholarly journals Progress in the treatment of ovarian cancer—lessons from homologous recombination deficiency—the first 10 years

2016 ◽  
Vol 27 ◽  
pp. i1-i3 ◽  
Author(s):  
S.B. Kaye
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e17543-e17543
Author(s):  
Xiaoxiang Chen ◽  
Jing Ni ◽  
Xia Xu ◽  
Wenwen Guo ◽  
Xianzhong Cheng ◽  
...  

e17543 Background: Homologous recombination deficiency (HRD) is the first phenotypically defined predictive biomarker for Poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer. However, the proportion of HRD positive in real world and the relationship of HRD status with PARPi in Chinese ovarian cancer patients remains unknown. Methods: A total of sixty-four ovarian cancer patients underwent PARPi, both Olaparib and Niraparib, were enrolled from August 2018 to January 2021 in Jiangsu Institute of Cancer Hospital. HRD score which was the sum of loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST) events were calculated using tumor DNA-based next generation sequencing (NGS) assays. HRD-positive was defined by either BRCA1/2 pathogenic or likely pathogenic mutation or HRD score ≥42. Progression-free survival (PFS) was analyzed with a log-rank test using HRD status and summarized using Kaplan-Meier methodology. Univariate and multiple cox-regression analysis were conducted to investigate all possible clinical factors. Results: 71.9% (46/64) patients were HRD positive and the rest 28.1% (18/64) were HRD negative, which was higher than the HRD positive proportion reported in Western countries. The PFS among HRD positive patients was significantly longer than those HRD negative patients (medium PFS 8.9 m vs 3.6 m, hazard ratio [HR]: 0.22, p < 0.001). Among them, 23 patients who were BRCA wild type but HRD positive had longer PFS than those with BRCA wild type and HRD negative (medium PFS 9.2 m vs 3.6 m, HR: 0.20, p < 0.001). Univariate cox-regression analysis found that HRD status, previous treatment lines, secondary cytoreductive surgery (SCS) were significantly associated with PFS after PARPi treatment. After multiple regression correction, HRD status (HR: 0.39, 95% CI: [0.20-0.76], p = 0.006), ECOG score (HR: 2.53, 95% CI: [1.24-5.17], p = 0.011) and SCS (HR: 2.21, 95% CI: [1.09-4.48], p = 0.028) were the independent factors. Subgroup analysis in ECOG = 0 subgroup (N = 36), HRD positive patients had significant longer PFS than HRD negative patients (medium PFS 10.3 m vs 5.8 m, HR: 0.14, p < 0.001). Also in the subgroup of patients without SCS, PFS in patients with HRD was longer than patients without HRD (medium PFS 10.2 m vs 5.7 m, HR: 0.29, p = 0.003). Conclusions: This is the first real-world data of HRD status in ovarian cancer patients from China and demonstrate that HRD is a valid biomarker for PARP inhibitors in Chinese ovarian cancer patients.


2021 ◽  
Author(s):  
Olivia Le Saux ◽  
Hélène Vanacker ◽  
Fatma Guermazi ◽  
Mélodie Carbonnaux ◽  
Clémence Roméo ◽  
...  

Homologous recombination deficiency and VEGF expression are key pathways in high-grade ovarian cancer. Recently, three randomized practice changing trials were published: the PAOLA-1, PRIMA and VELIA trials. The use of PARP inhibitors (PARPi) following chemotherapy has become standard of care in first line. Combination of PARPi with anti-angiogenic agents has demonstrated synergistic activity in preclinical study. This review summarizes the body of evidence supporting the efficacy and safety of the combination of PARPi and anti-angiogenic drugs in first-line homologous recombination deficiency high-grade ovarian cancer leading to US FDA and EMA approvals. This double maintenance is supported by: a large benefit with bevacizumab + olaparib compared with olaparib alone, a rationale for additive effect, and a good safety and cost-effective profile.


2022 ◽  
Vol 11 ◽  
Author(s):  
Jing Ni ◽  
Wenwen Guo ◽  
Qian Zhao ◽  
Xianzhong Cheng ◽  
Xia Xu ◽  
...  

Homologous recombination deficiency (HRD) is an approved predictive biomarker for Poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian cancer. However, the proportion of positive HRD in the real world and the relationship between HRD status and PARPi in Chinese ovarian cancer patients remain unknown. A total of 67 ovarian cancer patients who underwent PARPi, either olaparib or niraparib, were enrolled and passed inclusion criteria from August 2018 to January 2021 in the Affiliated Cancer Hospital of Nanjing Medical University. HRD status correlation with Progression-free survival (PFS) was analyzed and summarized with a log-rank test. Univariate and multiple cox-regression analyses were conducted to investigate all correlated clinical factors. Approximately 68.7% (46/67) patients were HRD positive and the rest 31.3% (21/67) were HRD negative. The PFS among HRD-positive patients was significantly longer than those HRD-negative patients (medium PFS 9.4 m vs 4.1 m, hazard ratio [HR]: 0.52, 95% CI: [0.38–0.71], p &lt;0.001). Univariate cox-regression found that HRD status, Eastern Cooperative Oncology Group (ECOG) status, BRCA status, previous treatment lines, secondary cytoreductive surgery and R0 resection were significantly associated with PFS after PARPi treatment. After multiple regression correction, HRD status and ECOG were the independent factors to predict PFS (HR: 0.67, 95% CI: [0.49–0.92], p = 0.01; HR: 2.20, 95% CI: [1.14–4.23], p = 0.02, respectively). In platinum sensitivity evaluable subgroup (N = 49), HRD status and platinum sensitivity status remain significant to predict PFS after multiple regression correction (HR: 0.71, 95% CI: [0.51–0.98], p = 0.04; HR: 0.49, 95% CI: [0.24–1.0], p = 0.05, respectively). This is the first real-world study of HRD status in ovarian cancer patients in China, and we demonstrate that HRD is an independent predictive biomarker for PARP inhibitors treatment in Chinese ovarian cancer patients.


2021 ◽  
Vol 11 ◽  
Author(s):  
Meng Zhang ◽  
Si-Cong Ma ◽  
Jia-Le Tan ◽  
Jian Wang ◽  
Xue Bai ◽  
...  

BackgroundHomologous recombination deficiency (HRD) is characterized by overall genomic instability and has emerged as an indispensable therapeutic target across various tumor types, particularly in ovarian cancer (OV). Unfortunately, current detection assays are far from perfect for identifying every HRD patient. The purpose of this study was to infer HRD from the landscape of copy number variation (CNV).MethodsGenome-wide CNV landscape was measured in OV patients from the Australian Ovarian Cancer Study (AOCS) clinical cohort and &gt;10,000 patients across 33 tumor types from The Cancer Genome Atlas (TCGA). HRD-predictive CNVs at subchromosomal resolution were identified through exploratory analysis depicting the CNV landscape of HRD versus non-HRD OV patients and independently validated using TCGA and AOCS cohorts. Gene-level CNVs were further analyzed to explore their potential predictive significance for HRD across tumor types at genetic resolution.ResultsAt subchromosomal resolution, 8q24.2 amplification and 5q13.2 deletion were predominantly witnessed in HRD patients (both p &lt; 0.0001), whereas 19q12 amplification occurred mainly in non-HRD patients (p &lt; 0.0001), compared with their corresponding counterparts within TCGA-OV. The predictive significance of 8q24.2 amplification (p &lt; 0.0001), 5q13.2 deletion (p = 0.0056), and 19q12 amplification (p = 0.0034) was externally validated within AOCS. Remarkably, pan-cancer analysis confirmed a cross-tumor predictive role of 8q24.2 amplification for HRD (p &lt; 0.0001). Further analysis of CNV in 8q24.2 at genetic resolution revealed that amplifications of the oncogenes, MYC (p = 0.0001) and NDRG1 (p = 0.0004), located on this fragment were also associated with HRD in a pan-cancer manner.ConclusionsThe CNV landscape serves as a generalized predictor of HRD in cancer patients not limited to OV. The detection of CNV at subchromosomal or genetic resolution could aid in the personalized treatment of HRD patients.


Sign in / Sign up

Export Citation Format

Share Document