scholarly journals Effects of intrinsic environmental predictability on intra-individual and intra-population variability of plant reproductive traits and eco-evolutionary consequences

2020 ◽  
Author(s):  
Martí March-Salas ◽  
Guillermo Fandos ◽  
Patrick S Fitze

Abstract Background and Aims It is widely accepted that changes in the environment affect mean trait expression, but little is known about how the environment shapes intra-individual and intra-population variance. Theory suggests that intra-individual variance might be plastic and under natural selection, rather than reflecting developmental noise, but evidence for this hypothesis is scarce. Here, we experimentally tested whether differences in intrinsic environmental predictability affect intra-individual and intra-population variability of different reproductive traits, and whether intra-individual variability is under selection. Methods Under field conditions, we subjected Onobrychis viciifolia to more and less predictable precipitation over 4 generations and 4 years. We analysed effects on the coefficient of intra-individual variation (CVi-i) and the coefficient of intra-population variation (CVi-p), assessed whether the coefficients of intra-individual variation (CsVi-i) are under natural selection and tested for transgenerational responses (ancestor environmental effects on offspring). Key Results Less predictable precipitation led to higher CsVi-i and CsVi-p, consistent with plastic responses. The CsVi-i of all studied traits were under consistent stabilizing selection, and precipitation predictability affected the strength of selection and the location of the optimal CVi-i of a single trait. All CsVi-i differed from the optimal CVi-i and the maternal and offspring CsVi-i were positively correlated, showing that there was scope for change. Nevertheless, no consistent transgenerational effects were found in any of the three descendant generations, which contrasts with recent studies that detected rapid transgenerational responses in the trait means of different plant species. This suggests that changes in intra-individual variability take longer to evolve than changes in trait means, which may explain why high intra-individual variability is maintained, despite the stabilizing selection. Conclusions The results indicate that plastic changes of intra-individual variability are an important determinant of whether plants will be able to cope with changes in environmental predictability induced by the currently observed climatic change.

2019 ◽  
Author(s):  
Gerit Arne Linneweber ◽  
Maheva Andriatsilavo ◽  
Suchetana Dutta ◽  
Liz Hellbruegge ◽  
Guangda Liu ◽  
...  

AbstractThe genome versus experience, or “Nature versus Nurture”, debate has dominated our understanding of individual behavioral variation. A third factor, namely variation in complex behavior potentially due to non-heritable “developmental noise” in brain development, has been largely ignored. Using the Drosophila vinegar fly we demonstrate a causal link between variation in brain wiring due to developmental noise, and behavioral individuality. A population of visual system neurons called DCNs shows non-heritable, inter-individual variation in right/left wiring asymmetry, and control object orientation in freely walking flies. We show that DCN wiring asymmetry predicts an individual’s object responses: the greater the asymmetry, the better the individual orients. Silencing DCNs abolishes correlations between anatomy and behavior, while inducing visual asymmetry via monocular deprivation “rescues” object orientation in DCN-symmetric individuals.One Sentence SummaryNon-heritable individual variation in neural circuit development underlies individual variability in behavior.


2019 ◽  
Vol 42 ◽  
Author(s):  
Emily F. Wissel ◽  
Leigh K. Smith

Abstract The target article suggests inter-individual variability is a weakness of microbiota-gut-brain (MGB) research, but we discuss why it is actually a strength. We comment on how accounting for individual differences can help researchers systematically understand the observed variance in microbiota composition, interpret null findings, and potentially improve the efficacy of therapeutic treatments in future clinical microbiome research.


1986 ◽  
Vol 56 (03) ◽  
pp. 371-375 ◽  
Author(s):  
Peretz Weiss ◽  
Hillel Halkin ◽  
Shlomo Almog

SummaryWithin-individual variation over time in the clearance (Cl) and effect (PT%) of warfarin, was measured in 25 inpatients (group I) studied after standard single or individualized split loading doses and 1-3 times (n = 16) 8-16 weeks later during maintenance. Mean Cl (2.5 α 0.9 ml/min) was similar in both phases but significant changes occurred in 6/16 patients, exceeding those expected from within-individual variation alone (defined by its 95% tolerance limits -24% to +62%). Initial PT% (21 α 5) was unaffected by dosing schedule, total or free plasma warfarin, varying between patients by only 18-24%. Mean initial and maintenance dose-PT% ratios (8.2 mg/d: 21% and 4.1 mg/d: 40%) were similar but significant changes in sensitivity to warfarin occurred in 4/16 patients. In group I and 64 other outpatients on maintenance therapy, between-individual variability was 36-52% for Cl and 49-56% for effect. PT% correlated best (r = 0.56) with free and total plasma warfarin but poorly with dose (r = 0.29), with only 30% of PT% variance explained at best, due to high between patient variability.Warfarin dose prediction whether based on extrapolation from initial effects to the maintenance phase, or on iterative methods not allowing for between- or within-patient variation in warfarin clearance or effect which may occur independently over time, have not improved on empirical therapy. This, due to the elements of biological variability as well as the intricacy of the warfarin - prothrombin complex interaction not captured by any kinetic-dynamic model used for prediction to date.


1992 ◽  
Vol 6 ◽  
pp. 292-292
Author(s):  
Robert Titus

Species populations commonly carry a great deal of genetic variation which is not expressed in individual phenotypes. Cryptic variation can be carried in recessive alleles, in cases of heterosis, or where modifier genes inhibit expression of the hidden trait. Other genetic and ecological factors also allow cryptic variation. Stabilizing selection prevents the expression of hidden traits; normalizing selection weeds out the deviants and canalizing selection suppresses their traits. Together the two keep the species near the top of the adaptive peak. Cryptic variation balances a species' need to be well-adapted to its environment and also for it to maintain a reserve of variation for potential environmental change. Expression of cryptic traits is rare and is usually associated with times of greatly reduced natural selection and rapid population growth, when the lower slopes of the adaptive peak are exposed.A possible example of the manifestation of cryptic traits occurs within the lower Trentonian Rafinesquina lineage of New York State. The two most commonly reported species of the genus have been reappraised in terms of cryptic variation. Extensive collections of Rafinesquina “lennoxensis” reveal far more intergrading morphotypes than had hitherto been recognized. The form which Salmon (1942) described is broadly U-shaped with sulcate margins. It grades into very convex forms as well as sharply-defined or convexly geniculate types. Of great importance, all forms grade into the flat, U-shaped, alate R. trentonensis, which is, by far, the most common and widespread lower Trentonian member of the genus. The R. “lennoxensis” assemblage has a very narrow biostratigraphy, being confined to a few locations in the upper Napanee Limestone. This places it in a quiet, protected, low stress, lagoonal setting behind the barrier shoal facies of the Kings Falls Limestone.The R. “lennoxensis” assemblage does not constitute a natural biologic species; it is reinterpreted as an assemblage of phenodeviants occupying a low stress, low natural selection lagoon facies. All such forms should be included within R. trentonensis. Given the evolutionary plasticity of this genus, extensive cryptic variation is not surprising.


2016 ◽  
Author(s):  
Ken A. Thompson ◽  
Kaitlin A. Cory ◽  
Marc T. J. Johnson

AbstractEvolutionary biologists have long sought to understand the ecological processes that generate plant reproductive diversity. Recent evidence indicates that constitutive antiherbivore defenses can alter natural selection on reproductive traits, but it is unclear whether induced defenses will have the same effect and whether reduced foliar damage in defended plants is the cause of this pattern. In a factorial field experiment using common milkweed, Asclepias syriaca, we induced plant defenses using jasmonic acid (JA) and imposed foliar damage using scissors. We found that JA-induced plants experienced selection for more inflorescences that were smaller in size (fewer flowers), while control plants only experienced a trend toward selection for larger inflorescences (more flowers); all effects were independent of foliar damage. Our results demonstrate that induced defenses can alter both the strength and direction of selection on reproductive traits, and suggest that antiherbivore defenses may promote the evolution of plant reproductive diversity.


2022 ◽  
Author(s):  
Hanna ten Brink ◽  
Thomas Ray Haaland ◽  
Oystein Hjorthol Opedal

The common occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials, and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary numerical and evolutionary simulation models of within- and among-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with density dependence, life-history traits, and priority effects due to competitive differences among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when "false starts" to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that two distinct germination strategies can evolve and coexist through negative frequency-dependent selection. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.


2019 ◽  
Author(s):  
Vera Weisbecker ◽  
Thomas Guillerme ◽  
Cruise Speck ◽  
Emma Sherratt ◽  
Hyab Mehari Abraha ◽  
...  

AbstractBackgroundWithin-species skull shape variation of marsupial mammals is widely considered low and strongly size-dependent (allometric), possibly due to developmental constraints arising from the altricial birth of marsupials. However, species whose skulls are impacted by strong muscular stresses – particularly those produced through mastication of tough food items – may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual. In such cases, shape variation should not be dominated by allometry; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and thus have low eigenvalues.ResultsWe assessed the evidence for high individual variation through 3D geometric morphometric shape analysis of crania and mandibles of thre species of grazing-specialized wombats, whose diet of tough grasses puts considerable strain on their masticatory system. As expected, we found little allometry and low Principal Component 1 (PC1) eigenvalues within crania and mandibles of all three species. Also as expected, the main variation was in the muzzle, zygomatic arches, and masticatory muscle attachments of the mandibular ramus. We then implemented a new test to ask if the landmark variation reflected on PC1 was reflected in individuals with opposite PC1 scores and with opposite shapes in Procrustes space. This showed that correspondence between individual and ordinated shape variation was limited, indicating high levels of individual variability in the masticatory apparatus.DiscussionOur results are inconsistent with hypotheses that skull shape variation within marsupial species reflects a constraint pattern. Rather, they support suggestions that individual plasticity can be an important determinant of within-species shape variation in marsupials (and possibly other mammals) with high masticatory stresses, making it difficult to understand the degree to which intrinsic constraint act on shape variation at the within-species level. We conclude that studies that link micro- and macroevolutionary patterns of shape variation might benefit from a focus on species with low-impact mastication, such as carnivorous or frugivorous species.


The Auk ◽  
2005 ◽  
Vol 122 (3) ◽  
pp. 902-914 ◽  
Author(s):  
Laura R. Nagy ◽  
Richard T. Holmes

AbstractIndividuals within a population vary in important fitness components, such as reproductive success. In general, females can maximize the number of young they produce by altering either the number of young per breeding attempt or the number of breeding attempts per season. In short-lived species, and especially in small passerine birds, number of breeding attempts per season varies markedly among individuals. Here, we evaluated factors influencing whether female Blackthroated Blue Warblers (Dendroica caerulescens) initiated additional nests after a successful breeding attempt (i.e. double-brooded). The percentage of females that laid a second clutch after successfully fledging a first brood ranged from 0 to 87% and averaged 53% (n = 7 years). Multiple logistic regression and AICc model selection indicated that double-brooded females bred in territories with greater food availability and produced heavier nestlings than single-brooded females. Female age, male age, date of first breeding attempt, and number of young in the first clutch were not included in the best-fit model. Older females, however, produced heavier fledglings, and females mated to older males occurred on territories with greater food availability, indicating that age contributed to individual variation in reproductive output. Because the proportion of females that produce multiple broods within a season can have a substantial effect on the annual fecundity of a population, variation among females and among the territories they occupy (i.e. habitat quality) are key factors influencing population dynamics in this and other multibrooded, shortlived species.Poner Nidadas Dobles o No? Variación Individual en el Esfuerzo Reproductivo en Dendroica caerulescens


AoB Plants ◽  
2019 ◽  
Vol 11 (6) ◽  
Author(s):  
Eugene W Schupp ◽  
Rafal Zwolak ◽  
Landon R Jones ◽  
Rebecca S Snell ◽  
Noelle G Beckman ◽  
...  

Abstract There is growing realization that intraspecific variation in seed dispersal can have important ecological and evolutionary consequences. However, we do not have a good understanding of the drivers or causes of intraspecific variation in dispersal, how strong an effect these drivers have, and how widespread they are across dispersal modes. As a first step to developing a better understanding, we present a broad, but not exhaustive, review of what is known about the drivers of intraspecific variation in seed dispersal, and what remains uncertain. We start by decomposing ‘drivers of intraspecific variation in seed dispersal’ into intrinsic drivers (i.e. variation in traits of individual plants) and extrinsic drivers (i.e. variation in ecological context). For intrinsic traits, we further decompose intraspecific variation into variation among individuals and variation of trait values within individuals. We then review our understanding of the major intrinsic and extrinsic drivers of intraspecific variation in seed dispersal, with an emphasis on variation among individuals. Crop size is the best-supported and best-understood intrinsic driver of variation across dispersal modes; overall, more seeds are dispersed as more seeds are produced, even in cases where per seed dispersal rates decline. Fruit/seed size is the second most widely studied intrinsic driver, and is also relevant to a broad range of seed dispersal modes. Remaining intrinsic drivers are poorly understood, and range from effects that are probably widespread, such as plant height, to drivers that are most likely sporadic, such as fruit or seed colour polymorphism. Primary extrinsic drivers of variation in seed dispersal include local environmental conditions and habitat structure. Finally, we present a selection of outstanding questions as a starting point to advance our understanding of individual variation in seed dispersal.


Sign in / Sign up

Export Citation Format

Share Document