scholarly journals Serial block face SEM visualization of unusual plant nuclear tubular extensions in a carnivorous plant (Utricularia, Lentibulariaceae)

2017 ◽  
Vol 120 (5) ◽  
pp. 673-680 ◽  
Author(s):  
Bartosz J Płachno ◽  
Piotr Świątek ◽  
Richard W Jobson ◽  
Karol Małota ◽  
Wojciech Brutkowski
Keyword(s):  

Author(s):  
Joseph M. Blum ◽  
Edward P. Gargiulo ◽  
J. R. Sawers

It is now well-known that chatter (Figure 1) is caused by vibration between the microtome arm and the diamond knife. It is usually observed as a cyclical variation in “optical” density of an electron micrograph due to sample thickness variations perpendicular to the cutting direction. This vibration might be induced by using too large a block face, too large a clearance angle, excessive cutting speed, non-uniform embedding medium or microtome vibration. Another prominent cause is environmental vibration caused by inadequate building construction. Microtomes should be installed on firm, solid floors. The best floors are thick, ground-level concrete pads poured over a sand bed and isolated from the building walls. Even when these precautions are followed, we recommend an additional isolation pad placed on the top of a sturdy table.



Author(s):  
B. J. Panessa ◽  
J. F. Gennaro

Tissue from the hood and sarcophagus regions were fixed in 6% glutaraldehyde in 1 M.cacodylate buffer and washed in buffer. Tissue for SEM was partially dried, attached to aluminium targets with silver conducting paint, carbon-gold coated(100-500Å), and examined in a Kent Cambridge Stereoscan S4. Tissue for the light microscope was post fixed in 1% aqueous OsO4, dehydrated in acetone (4°C), embedded in Epon 812 and sectioned at ½u on a Sorvall MT 2 ultramicrotome. Cross and longitudinal sections were cut and stained with PAS, 0.5% toluidine blue and 1% azure II-methylene blue. Measurements were made from both SEM and Light micrographs.The tissue had two structurally distinct surfaces, an outer surface with small (225-500 µ) pubescent hairs (12/mm2), numerous stoma (77/mm2), and nectar glands(8/mm2); and an inner surface with large (784-1000 µ)stiff hairs(4/mm2), fewer stoma (46/mm2) and larger, more complex glands(16/mm2), presumably of a digestive nature.



2013 ◽  
Vol 6 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Ai Chi ◽  
Li Yuwei

Coal body is a type of fractured rock mass in which lots of cleat fractures developed. Its mechanical properties vary with the parametric variation of coal rock block, face cleat and butt cleat. Based on the linear elastic theory and displacement equivalent principle and simplifying the face cleat and butt cleat as multi-bank penetrating and intermittent cracks, the model was established to calculate the elastic modulus and Poisson's ratio of coal body combined with cleat. By analyzing the model, it also obtained the influence of the parameter variation of coal rock block, face cleat and butt cleat on the elastic modulus and Poisson's ratio of the coal body. Study results showed that the connectivity rate of butt cleat and the distance between face cleats had a weak influence on elastic modulus of coal body. When the inclination of face cleat was 90°, the elastic modulus of coal body reached the maximal value and it equaled to the elastic modulus of coal rock block. When the inclination of face cleat was 0°, the elastic modulus of coal body was exclusively dependent on the elastic modulus of coal rock block, the normal stiffness of face cleat and the distance between them. When the distance between butt cleats or the connectivity rate of butt cleat was fixed, the Poisson's ratio of the coal body initially increased and then decreased with increasing of the face cleat inclination.



Author(s):  
Bartosz J. Płachno ◽  
Lyudmila E. Muravnik

We review the current knowledge of trap anatomy of carnivorous plants, with a focus on the diversity and structure of the glands that are used to attract, capture, kill and digest their prey and finally to absorb nutrients from carcasses of prey. These glands have diverse forms. Regardless of their structure and origin, they have the same functional units, but there are differences in subcellular mechanisms and adaptations for carnivory. We propose a new type of carnivorous plant trap—a ‘fecal traps—which has unique physiology, morphology, and anatomy for attracting the animals that are the source of excrement and also to retain and use it.



Author(s):  
Matthew C. Fitzpatrick ◽  
Aaron M. Ellison

Climatic change likely will exacerbate current threats to carnivorous plants. However, estimating the severity of climatic change is challenged by the unique ecology of carnivorous plants, including habitat specialization, dispersal limitation, small ranges, and small population sizes. We discuss and apply methods for modeling species distributions to overcome these challenges and quantify the vulnerability of carnivorous plants to rapid climatic change. Results suggest that climatic change will reduce habitat suitability for most carnivorous plants. Models also project increases in habitat suitability for many species, but the extent to which these increases may offset habitat losses will depend on whether individuals can disperse to and establish in newly suitable habitats outside of their current distribution. Reducing existing stressors and protecting habitats where numerous carnivorous plant species occur may ameliorate impacts of climatic change on this unique group of plants.





FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Alberto Davila‐Lara ◽  
Michael Reichelt ◽  
Ding Wang ◽  
Heiko Vogel ◽  
Axel Mithöfer
Keyword(s):  


2021 ◽  
Vol 27 (S1) ◽  
pp. 3176-3177
Author(s):  
Nanami Takagi ◽  
Norio Yamashita ◽  
Yuki Tsujimura ◽  
Hiroshi Takemura ◽  
Sze Keat Chee ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document