EP3: an ensemble predictor that accurately identifies type III secreted effectors

Author(s):  
Jing Li ◽  
Leyi Wei ◽  
Fei Guo ◽  
Quan Zou

Abstract Type III secretion systems (T3SS) can be found in many pathogenic bacteria, such as Dysentery bacillus, Salmonella typhimurium, Vibrio cholera and pathogenic Escherichia coli. The routes of infection of these bacteria include the T3SS transferring a large number of type III secreted effectors (T3SE) into host cells, thereby blocking or adjusting the communication channels of the host cells. Therefore, the accurate identification of T3SEs is the precondition for the further study of pathogenic bacteria. In this article, a new T3SEs ensemble predictor was developed, which can accurately distinguish T3SEs from any unknown protein. In the course of the experiment, methods and models are strictly trained and tested. Compared with other methods, EP3 demonstrates better performance, including the absence of overfitting, strong robustness and powerful predictive ability. EP3 (an ensemble predictor that accurately identifies T3SEs) is designed to simplify the user’s (especially nonprofessional users) access to T3SEs for further investigation, which will have a significant impact on understanding the progression of pathogenic bacterial infections. Based on the integrated model that we proposed, a web server had been established to distinguish T3SEs from non-T3SEs, where have EP3_1 and EP3_2. The users can choose the model according to the species of the samples to be tested. Our related tools and data can be accessed through the link http://lab.malab.cn/∼lijing/EP3.html.

2008 ◽  
Vol 191 (2) ◽  
pp. 563-570 ◽  
Author(s):  
Andreas K. J. Veenendaal ◽  
Charlotta Sundin ◽  
Ariel J. Blocker

ABSTRACT Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248975
Author(s):  
Momo Takemura ◽  
Takeshi Haneda ◽  
Hikari Idei ◽  
Tsuyoshi Miki ◽  
Nobuhiko Okada

Nuclear factor-kappa B (NF-κB) plays a critical role in the host defense against microbial pathogens. Many pathogens modulate NF-κB signaling to establish infection in their host. Salmonella enterica serovar Typhimurium (S. Typhimurium) possesses two type III secretion systems (T3SS-1 and T3SS-2) and directly injects many effector proteins into host cells. It has been reported that some effectors block NF-κB signaling, but the molecular mechanism of the inactivation of NF-κB signaling in S. Typhimurium is poorly understood. Here, we identified seven type III effectors—GogA, GtgA, PipA, SseK1, SseK2, SseK3, and SteE—that inhibited NF-κB activation in HeLa cells stimulated with TNF-α. We also determined that only GogA and GtgA are involved in regulation of the activation of NF-κB in HeLa cells infected with S. Typhimurium. GogA, GtgA, and PipA are highly homologous to one another and have the consensus zinc metalloprotease HEXXH motif. Our experiments demonstrated that GogA, GtgA, and PipA each directly cleaved NF-κB p65, whereas GogA and GtgA, but not PipA, inhibited the NF-κB activation in HeLa cells infected with S. Typhimurium. Further, expressions of the gogA or gtgA gene were induced under the SPI-1-and SPI-2-inducing conditions, but expression of the pipA gene was induced only under the SPI-2-inducing condition. We also showed that PipA was secreted into RAW264.7 cells through T3SS-2. Finally, we indicated that PipA elicits bacterial dissemination in the systemic stage of infection of S. Typhimurium via a T3SS-1-independent mechanism. Collectively, our results suggest that PipA, GogA and GtgA contribute to S. Typhimurium pathogenesis in different ways.


2019 ◽  
Author(s):  
Sibel Westerhausen ◽  
Melanie Nowak ◽  
Claudia Torres-Vargas ◽  
Ursula Bilitewski ◽  
Erwin Bohn ◽  
...  

AbstractThe elucidation of the molecular mechanisms of secretion through bacterial protein secretion systems is impeded by a lack of assays to quantitatively assess secretion kinetics. Also the analysis of the biological role of these secretion systems as well as the identification of inhibitors targeting these systems would greatly benefit from the availability of a simple, quick and quantitative assay to monitor principle secretion and injection into host cells. Here we present a versatile solution to this need, utilizing the small and very bright NanoLuc luciferase to assess secretion and injection through the type III secretion system encoded by Salmonella pathogenicity island 1. The NanoLuc-based secretion assay features a very high signal-to-noise ratio and sensitivity down to the nanoliter scale. The assay enables monitoring of secretion kinetics and is adaptable to a high throughput screening format in 384-well microplates. We further developed NanoLuc and split-NanoLuc-based assays that enable the monitoring of type III secretion-dependent injection of effector proteins into host cells.ImportanceThe ability to secrete proteins to the bacterial cell surface, to the extracellular environment, or even into target cells is one of the foundations of interbacterial as well as pathogen-host interaction. While great progress has been made in elucidating assembly and structure of secretion systems, our understanding of their secretion mechanism often lags behind, not last because of the challenge to quantitatively assess secretion function. Here, we developed a luciferase-based assay to enable the simple, quick, quantitative, and high throughput-compatible assessment of secretion and injection through virulence-associated type III secretion systems. The assay allows detection of minute amounts of secreted substrate proteins either in the supernatant of the bacterial culture or within eukaryotic host cells. It thus provides an enabling technology to elucidate the mechanisms of secretion and injection of type III secretion systems and is likely adaptable to assay secretion through other bacterial secretion systems.


2005 ◽  
Vol 187 (17) ◽  
pp. 6075-6083 ◽  
Author(s):  
Sasha M. Warren ◽  
Glenn M. Young

ABSTRACT Yersinia enterocolitica biovar 1B maintains three distinct type III secretion (TTS) systems, which independently operate to target proteins to extracellular sites. The Ysa and Ysc systems are prototypical contact-dependent TTS systems that translocate toxic effectors to the cytosols of targeted eukaryotic host cells during infection. The flagellar TTS system is utilized during the assembly of the flagellum and is required for secretion of the virulence-associated phospholipase YplA to the bacterial milieu. When ectopically produced, YplA is also a secretion substrate for the Ysa and Ysc TTS systems. In this study, we define elements that allow YplA recognition and export by the Ysa, Ysc, and flagellar TTS systems. Fusion of various amino-terminal regions of YplA to Escherichia coli alkaline phosphatase (PhoA) lacking its native secretion signal demonstrated that the first 20 amino acids or corresponding mRNA codons of YplA were sufficient for export of YplA-PhoA chimeras by each TTS system. Export of native YplA by each of the three TTS systems was also found to depend on the integrity of its amino terminus. Introduction of a frameshift mutation or deletion of yplA sequences encoding the amino-terminal 20 residues negatively impacted YplA secretion. Deletion of other yplA regions was tolerated, including that resulting in the removal of amino acid residues 30 through 40 of the polypeptide and removal of the 5′ untranslated region of the mRNA. This work supports a model in which independent and distantly related TTS systems of Y. enterocolitica recognize protein substrates by a similar mechanism.


2020 ◽  
Vol 8 (3) ◽  
pp. 357 ◽  
Author(s):  
Juan Luis Araujo-Garrido ◽  
Joaquín Bernal-Bayard ◽  
Francisco Ramos-Morales

Type III secretion systems are used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, into the cytosol of host cells. These virulence factors interfere with a diverse array of host signal transduction pathways and cellular processes. Many effectors have catalytic activities to promote post-translational modifications of host proteins. This review focuses on a family of effectors with glycosyltransferase activity that catalyze addition of N-acetyl-d-glucosamine to specific arginine residues in target proteins, leading to reduced NF-κB pathway activation and impaired host cell death. This family includes NleB from Citrobacter rodentium, NleB1 and NleB2 from enteropathogenic and enterohemorrhagic Escherichia coli, and SseK1, SseK2, and SseK3 from Salmonella enterica. First, we place these effectors in the general framework of the glycosyltransferase superfamily and in the particular context of the role of glycosylation in bacterial pathogenesis. Then, we provide detailed information about currently known members of this family, their role in virulence, and their targets.


2012 ◽  
Vol 2012 ◽  
pp. 1-36 ◽  
Author(s):  
Francisco Ramos-Morales

Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.


2009 ◽  
Vol 77 (12) ◽  
pp. 5458-5470 ◽  
Author(s):  
Stefanie U. Hölzer ◽  
Markus C. Schlumberger ◽  
Daniela Jäckel ◽  
Michael Hensel

ABSTRACT The virulence of Salmonella enterica critically depends on the functions of two type III secretion systems (T3SS), with the Salmonella pathogenicity island 1 (SPI1)-encoded T3SS required for host cell invasion and the SPI2-T3SS enabling Salmonella to proliferate within host cells. A further T3SS is required for the assembly of the flagella. Most serovars of Salmonella also possess a lipopolysaccharide with a complex O-antigen (OAg) structure. The number of OAg units attached to the core polysaccharide varies between 16 and more than 100 repeats, with a trimodal distribution. This work investigated the correlation of the OAg length with the functions of the SPI1-T3SS and the SPI2-T3SS. We observed that the number of repeats of OAg units had no effect on bacterial motility. The interaction of Salmonella with epithelial cells was altered if the OAg structure was changed by mutations in regulators of OAg. Strains defective in synthesis of very long or long and very long OAg species showed increased translocation of a SPI1-T3SS effector protein and increased invasion. Invasion of a strain entirely lacking OAg was increased, but this mutant strain also showed increased adhesion. In contrast, translocation of a SPI2-T3SS effector protein and intracellular replication were not affected by modification of the OAg length. Mutant strains lacking the entire OAg or long and very long OAg were highly susceptible to complement killing. These observations indicate that the architecture of the outer membrane of Salmonella is balanced to permit sufficient T3SS function but also to confer optimal protection against antimicrobial defense mechanisms.


1998 ◽  
Vol 62 (2) ◽  
pp. 379-433 ◽  
Author(s):  
Christoph J. Hueck

SUMMARY Various gram-negative animal and plant pathogens use a novel, sec-independent protein secretion system as a basic virulence mechanism. It is becoming increasingly clear that these so-called type III secretion systems inject (translocate) proteins into the cytosol of eukaryotic cells, where the translocated proteins facilitate bacterial pathogenesis by specifically interfering with host cell signal transduction and other cellular processes. Accordingly, some type III secretion systems are activated by bacterial contact with host cell surfaces. Individual type III secretion systems direct the secretion and translocation of a variety of unrelated proteins, which account for species-specific pathogenesis phenotypes. In contrast to the secreted virulence factors, most of the 15 to 20 membrane-associated proteins which constitute the type III secretion apparatus are conserved among different pathogens. Most of the inner membrane components of the type III secretion apparatus show additional homologies to flagellar biosynthetic proteins, while a conserved outer membrane factor is similar to secretins from type II and other secretion pathways. Structurally conserved chaperones which specifically bind to individual secreted proteins play an important role in type III protein secretion, apparently by preventing premature interactions of the secreted factors with other proteins. The genes encoding type III secretion systems are clustered, and various pieces of evidence suggest that these systems have been acquired by horizontal genetic transfer during evolution. Expression of type III secretion systems is coordinately regulated in response to host environmental stimuli by networks of transcription factors. This review comprises a comparison of the structure, function, regulation, and impact on host cells of the type III secretion systems in the animal pathogens Yersinia spp., Pseudomonas aeruginosa, Shigella flexneri, Salmonella typhimurium, enteropathogenic Escherichia coli, and Chlamydia spp. and the plant pathogens Pseudomonas syringae, Erwinia spp., Ralstonia solanacearum, Xanthomonas campestris, and Rhizobium spp.


2010 ◽  
Vol 23 (5) ◽  
pp. 682-701 ◽  
Author(s):  
Inmaculada Ortiz-Martín ◽  
Richard Thwaites ◽  
John W. Mansfield ◽  
Carmen R. Beuzón

Many plant-pathogenic bacteria require type III secretion systems (T3SS) to cause disease in compatible hosts and to induce the hypersensitive response in resistant plants. T3SS gene expression is induced within the plant and responds to host and environmental factors. In Pseudomonas syringae, expression is downregulated by the Lon protease in rich medium and by HrpV under inducing conditions. HrpV acts as an anti-activator by binding HrpS. HrpG, which can also bind HrpV, has been reported to act as an anti-anti-activator. Previous studies have used mostly in vitro inducing conditions, different pathovars, and methodology. We have used single and double lon and hrpV mutants of P. syringae pv. phaseolicola 1448a, as well as strains ectopically expressing the regulators, to examine their role in coordinating expression of the T3SS. We applied real-time polymerase chain reaction to analyze gene expression both in vitro and in planta, and assessed bacterial fitness using competitive indices. Our results indicate that i) Lon downregulates expression of the hrp/hrc genes in all conditions, probably by constitutively degrading naturally unstable HrpR; ii) HrpV and HrpT downregulate expression of the hrp/hrc genes in all conditions; and iii) HrpG has an additional, HrpV-independent role, regulating expression of the hrpC operon.


Sign in / Sign up

Export Citation Format

Share Document