scholarly journals InterPep2: global peptide–protein docking using interaction surface templates

2020 ◽  
Vol 36 (8) ◽  
pp. 2458-2465 ◽  
Author(s):  
Isak Johansson-Åkhe ◽  
Claudio Mirabello ◽  
Björn Wallner

Abstract Motivation Interactions between proteins and peptides or peptide-like intrinsically disordered regions are involved in many important biological processes, such as gene expression and cell life-cycle regulation. Experimentally determining the structure of such interactions is time-consuming and difficult because of the inherent flexibility of the peptide ligand. Although several prediction-methods exist, most are limited in performance or availability. Results InterPep2 is a freely available method for predicting the structure of peptide–protein interactions. Improved performance is obtained by using templates from both peptide–protein and regular protein–protein interactions, and by a random forest trained to predict the DockQ-score for a given template using sequence and structural features. When tested on 252 bound peptide–protein complexes from structures deposited after the complexes used in the construction of the training and templates sets of InterPep2, InterPep2-Refined correctly positioned 67 peptides within 4.0 Å LRMSD among top10, similar to another state-of-the-art template-based method which positioned 54 peptides correctly. However, InterPep2 displays a superior ability to evaluate the quality of its own predictions. On a previously established set of 27 non-redundant unbound-to-bound peptide–protein complexes, InterPep2 performs on-par with leading methods. The extended InterPep2-Refined protocol managed to correctly model 15 of these complexes within 4.0 Å LRMSD among top10, without using templates from homologs. In addition, combining the template-based predictions from InterPep2 with ab initio predictions from PIPER-FlexPepDock resulted in 22% more near-native predictions compared to the best single method (22 versus 18). Availability and implementation The program is available from: http://wallnerlab.org/InterPep2. Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Author(s):  
Isak Johansson-Åkhe ◽  
Claudio Mirabello ◽  
Björn Wallner

AbstractMotivationInteractions between proteins and peptides or peptide-like intrinsically disordered regions are involved in many important biological processes, such as gene expression and cell life-cycle regulation. Experimentally determining the structure of such interactions is time-consuming, and because of the disordered nature of the ligand, the interactions are especially difficult to predict through software, requiring specialized solutions. Although several prediction-methods exist, most are limited in performance or availability.ResultsInterPep2 is a freely available method for predicting the structure of peptide-protein interactions. We have previously shown that structural templates can be used to accurately predict peptide-protein binding sites, and that using templates from regular protein-protein interactions will increase the number of sites found. Here, we show that the same principle can be extended to dock the peptide to the binding surface using InterPep2. A key component of InterPep2 is the ability to score plausible interaction templates using a RandomForest trained to predict the DockQ-score using sequence and structural features. InterPep2 is tested on a difficult dataset of 251 peptide-protein complexes, where it correctly positions 136 (54%) at the correct site compared to 114 (45%) for the second best method. Analyzing the confidence score InterPep2 recalls more true positives across all specificity levels compared to the second best method, for example at 10% False Positive Rate it correctly identifies 59% of the complexes compared to 44% for the second best method.AvailabilityThe program is available from: http://wallnerlab.org/InterPepContactBjörn Wallner [email protected]


Author(s):  
Varsha D Badal ◽  
Petras J Kundrotas ◽  
Ilya A Vakser

Abstract Motivation Procedures for structural modeling of protein-protein complexes (protein docking) produce a number of models which need to be further analyzed and scored. Scoring can be based on independently determined constraints on the structure of the complex, such as knowledge of amino acids essential for the protein interaction. Previously, we showed that text mining of residues in freely available PubMed abstracts of papers on studies of protein-protein interactions may generate such constraints. However, absence of post-processing of the spotted residues reduced usability of the constraints, as a significant number of the residues were not relevant for the binding of the specific proteins. Results We explored filtering of the irrelevant residues by two machine learning approaches, Deep Recursive Neural Network (DRNN) and Support Vector Machine (SVM) models with different training/testing schemes. The results showed that the DRNN model is superior to the SVM model when training is performed on the PMC-OA full-text articles and applied to classification (interface or non-interface) of the residues spotted in the PubMed abstracts. When both training and testing is performed on full-text articles or on abstracts, the performance of these models is similar. Thus, in such cases, there is no need to utilize computationally demanding DRNN approach, which is computationally expensive especially at the training stage. The reason is that SVM success is often determined by the similarity in data/text patterns in the training and the testing sets, whereas the sentence structures in the abstracts are, in general, different from those in the full text articles. Availability The code and the datasets generated in this study are available at https://gitlab.ku.edu/vakser-lab-public/text-mining/-/tree/2020-09-04. Supplementary information Supplementary data are available at Bioinformatics online.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1413
Author(s):  
Kristina Kastano ◽  
Gábor Erdős ◽  
Pablo Mier ◽  
Gregorio Alanis-Lobato ◽  
Vasilis J. Promponas ◽  
...  

Intrinsically disordered proteins (IDPs) contain regions lacking intrinsic globular structure (intrinsically disordered regions, IDRs). IDPs are present across the tree of life, with great variability of IDR type and frequency even between closely related taxa. To investigate the function of IDRs, we evaluated and compared the distribution of disorder content in 10,695 reference proteomes, confirming its high variability and finding certain correlation along the Euteleostomi (bony vertebrates) lineage to number of cell types. We used the comparison of orthologs to study the function of disorder related to increase in cell types, observing that multiple interacting subunits of protein complexes might gain IDRs in evolution, thus stressing the function of IDRs in modulating protein-protein interactions, particularly in the cell nucleus. Interestingly, the conservation of local compositional biases of IDPs follows residue-type specific patterns, with E- and K-rich regions being evolutionarily stable and Q- and A-rich regions being more dynamic. We provide a framework for targeted evolutionary studies of the emergence of IDRs. We believe that, given the large variability of IDR distributions in different species, studies using this evolutionary perspective are required.


2021 ◽  
Author(s):  
Rui Yin ◽  
Brandon Y Feng ◽  
Amitabh Varshney ◽  
Brian G Pierce

High resolution experimental structural determination of protein-protein interactions has led to valuable mechanistic insights, yet due to the massive number of interactions and experimental limitations there is a need for computational methods that can accurately model their structures. Here we explore the use of the recently developed deep learning method, AlphaFold, to predict structures of protein complexes from sequence. With a benchmark of 152 diverse heterodimeric protein complexes, multiple implementations and parameters of AlphaFold were tested for accuracy. Remarkably, many cases had highly accurate models generated as top-ranked predictions, greatly surpassing the performance of unbound protein-protein docking, whereas antibody-antigen docking was largely unsuccessful. While AlphaFold-generated accuracy predictions were able to discriminate near-native models, previously developed scoring protocols improved performance. Our study demonstrates that end-to-end deep learning can accurately model transient protein complexes, and identifies areas for improvement to guide future developments to reliably model any protein-protein interaction of interest.


2020 ◽  
Vol 27 (37) ◽  
pp. 6306-6355 ◽  
Author(s):  
Marian Vincenzi ◽  
Flavia Anna Mercurio ◽  
Marilisa Leone

Background:: Many pathways regarding healthy cells and/or linked to diseases onset and progression depend on large assemblies including multi-protein complexes. Protein-protein interactions may occur through a vast array of modules known as protein interaction domains (PIDs). Objective:: This review concerns with PIDs recognizing post-translationally modified peptide sequences and intends to provide the scientific community with state of art knowledge on their 3D structures, binding topologies and potential applications in the drug discovery field. Method:: Several databases, such as the Pfam (Protein family), the SMART (Simple Modular Architecture Research Tool) and the PDB (Protein Data Bank), were searched to look for different domain families and gain structural information on protein complexes in which particular PIDs are involved. Recent literature on PIDs and related drug discovery campaigns was retrieved through Pubmed and analyzed. Results and Conclusion:: PIDs are rather versatile as concerning their binding preferences. Many of them recognize specifically only determined amino acid stretches with post-translational modifications, a few others are able to interact with several post-translationally modified sequences or with unmodified ones. Many PIDs can be linked to different diseases including cancer. The tremendous amount of available structural data led to the structure-based design of several molecules targeting protein-protein interactions mediated by PIDs, including peptides, peptidomimetics and small compounds. More studies are needed to fully role out, among different families, PIDs that can be considered reliable therapeutic targets, however, attacking PIDs rather than catalytic domains of a particular protein may represent a route to obtain selective inhibitors.


2017 ◽  
Vol 114 (9) ◽  
pp. 2224-2229 ◽  
Author(s):  
Daniel A. Weisz ◽  
Haijun Liu ◽  
Hao Zhang ◽  
Sundarapandian Thangapandian ◽  
Emad Tajkhorshid ◽  
...  

Photosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII. Its role is particularly important under stress conditions when PSII damage occurs frequently. Psb28 is not found, however, in any PSII crystal structure, and its structural location has remained unknown. In this study, we used chemical cross-linking combined with mass spectrometry to capture the transient interaction of Psb28 with PSII. We detected three cross-links between Psb28 and the α- and β-subunits of cytochrome b559, an essential component of the PSII reaction-center complex. These distance restraints enable us to position Psb28 on the cytosolic surface of PSII directly above cytochrome b559, in close proximity to the QB site. Protein–protein docking results also support Psb28 binding in this region. Determination of the Psb28 binding site and other biochemical evidence allow us to propose a mechanism by which Psb28 exerts its protective effect on the RC47 intermediate. This study also shows that isotope-encoded cross-linking with the “mass tags” selection criteria allows confident identification of more cross-linked peptides in PSII than has been previously reported. This approach thus holds promise to identify other transient protein–protein interactions in membrane protein complexes.


2019 ◽  
Author(s):  
Georgy Derevyanko ◽  
Guillaume Lamoureux

AbstractProtein-protein interactions are determined by a number of hard-to-capture features related to shape complementarity, electrostatics, and hydrophobicity. These features may be intrinsic to the protein or induced by the presence of a partner. A conventional approach to protein-protein docking consists in engineering a small number of spatial features for each protein, and in minimizing the sum of their correlations with respect to the spatial arrangement of the two proteins. To generalize this approach, we introduce a deep neural network architecture that transforms the raw atomic densities of each protein into complex three-dimensional representations. Each point in the volume containing the protein is described by 48 learned features, which are correlated and combined with the features of a second protein to produce a score dependent on the relative position and orientation of the two proteins. The architecture is based on multiple layers of SE(3)-equivariant convolutional neural networks, which provide built-in rotational and translational invariance of the score with respect to the structure of the complex. The model is trained end-to-end on a set of decoy conformations generated from 851 nonredundant protein-protein complexes and is tested on data from the Protein-Protein Docking Benchmark Version 4.0.


2020 ◽  
Vol 19 (7) ◽  
pp. 1070-1075 ◽  
Author(s):  
Katrina Meyer ◽  
Matthias Selbach

Protein-protein interactions are often mediated by short linear motifs (SLiMs) that are located in intrinsically disordered regions (IDRs) of proteins. Interactions mediated by SLiMs are notoriously difficult to study, and many functionally relevant interactions likely remain to be uncovered. Recently, pull-downs with synthetic peptides in combination with quantitative mass spectrometry emerged as a powerful screening approach to study protein-protein interactions mediated by SLiMs. Specifically, arrays of synthetic peptides immobilized on cellulose membranes provide a scalable means to identify the interaction partners of many peptides in parallel. In this minireview we briefly highlight the relevance of SLiMs for protein-protein interactions, outline existing screening technologies, discuss unique advantages of peptide-based interaction screens and provide practical suggestions for setting up such peptide-based screens.


mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Anna Hernández Durán ◽  
Kay Grünewald ◽  
Maya Topf

ABSTRACT Protein interactions are major driving forces behind the functional phenotypes of biological processes. As such, evolutionary footprints are reflected in system-level collections of protein-protein interactions (PPIs), i.e., protein interactomes. We conducted a comparative analysis of intraviral protein interactomes for representative species of each of the three subfamilies of herpesviruses (herpes simplex virus 1, human cytomegalovirus, and Epstein-Barr virus), which are highly prevalent etiologic agents of important human diseases. The intraviral interactomes were reconstructed by combining experimentally supported and computationally predicted protein-protein interactions. Using cross-species network comparison, we then identified family-wise conserved interactions and protein complexes, which we defined as a herpesviral “central” intraviral protein interactome. A large number of widely accepted conserved herpesviral protein complexes are present in this central intraviral interactome, encouragingly supporting the biological coherence of our results. Importantly, these protein complexes represent most, if not all, of the essential steps required during a productive life cycle. Hence the central intraviral protein interactome could plausibly represent a minimal infectious interactome of the herpesvirus family across a variety of hosts. Our data, which have been integrated into our herpesvirus interactomics database, HVint2.0, could assist in creating comprehensive system-level computational models of this viral lineage. IMPORTANCE Herpesviruses are an important socioeconomic burden for both humans and livestock. Throughout their long evolutionary history, individual herpesvirus species have developed remarkable host specificity, while collectively the Herpesviridae family has evolved to infect a large variety of eukaryotic hosts. The development of approaches to fight herpesvirus infections has been hampered by the complexity of herpesviruses’ genomes, proteomes, and structural features. The data and insights generated by our study add to the understanding of the functional organization of herpesvirus-encoded proteins, specifically of family-wise conserved features defining essential components required for a productive infectious cycle across different hosts, which can contribute toward the conceptualization of antiherpetic infection strategies with an effect on a broader range of target species. All of the generated data have been made freely available through our HVint2.0 database, a dedicated resource of curated herpesvirus interactomics purposely created to promote and assist future studies in the field.


2017 ◽  
Vol 429 (18) ◽  
pp. 2790-2801 ◽  
Author(s):  
Alexander G. Kozlov ◽  
Min Kyung Shinn ◽  
Elizabeth A. Weiland ◽  
Timothy M. Lohman

Sign in / Sign up

Export Citation Format

Share Document