scholarly journals Detecting Gene Ontology misannotations using taxon-specific rate ratio comparisons

2020 ◽  
Vol 36 (16) ◽  
pp. 4383-4388 ◽  
Author(s):  
Xiaoqiong Wei ◽  
Chengxin Zhang ◽  
Peter L Freddolino ◽  
Yang Zhang

Abstract Motivation Many protein function databases are built on automated or semi-automated curations and can contain various annotation errors. The correction of such misannotations is critical to improving the accuracy and reliability of the databases. Results We proposed a new approach to detect potentially incorrect Gene Ontology (GO) annotations by comparing the ratio of annotation rates (RAR) for the same GO term across different taxonomic groups, where those with a relatively low RAR usually correspond to incorrect annotations. As an illustration, we applied the approach to 20 commonly studied species in two recent UniProt-GOA releases and identified 250 potential misannotations in the 2018-11-6 release, where only 25% of them were corrected in the 2019-6-3 release. Importantly, 56% of the misannotations are ‘Inferred from Biological aspect of Ancestor (IBA)’ which is in contradiction with previous observations that attributed misannotations mainly to ‘Inferred from Sequence or structural Similarity (ISS)’, probably reflecting an error source shift due to the new developments of function annotation databases. The results demonstrated a simple but efficient misannotation detection approach that is useful for large-scale comparative protein function studies. Availability and implementation https://zhanglab.ccmb.med.umich.edu/RAR. Supplementary information Supplementary data are available at Bioinformatics online.

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1577 ◽  
Author(s):  
Linhua Wang ◽  
Jeffrey Law ◽  
Shiv D. Kale ◽  
T. M. Murali ◽  
Gaurav Pandey

Heterogeneous ensembles are an effective approach in scenarios where the ideal data type and/or individual predictor are unclear for a given problem. These ensembles have shown promise for protein function prediction (PFP), but their ability to improve PFP at a large scale is unclear. The overall goal of this study is to critically assess this ability of a variety of heterogeneous ensemble methods across a multitude of functional terms, proteins and organisms. Our results show that these methods, especially Stacking using Logistic Regression, indeed produce more accurate predictions for a variety of Gene Ontology terms differing in size and specificity. To enable the application of these methods to other related problems, we have publicly shared the HPC-enabled code underlying this work as LargeGOPred (https://github.com/GauravPandeyLab/LargeGOPred).


2020 ◽  
Vol 36 (11) ◽  
pp. 3357-3364 ◽  
Author(s):  
Tyler C Shimko ◽  
Polly M Fordyce ◽  
Yaron Orenstein

Abstract Motivation High-throughput protein screening is a critical technique for dissecting and designing protein function. Libraries for these assays can be created through a number of means, including targeted or random mutagenesis of a template protein sequence or direct DNA synthesis. However, mutagenic library construction methods often yield vastly more nonfunctional than functional variants and, despite advances in large-scale DNA synthesis, individual synthesis of each desired DNA template is often prohibitively expensive. Consequently, many protein-screening libraries rely on the use of degenerate codons (DCs), mixtures of DNA bases incorporated at specific positions during DNA synthesis, to generate highly diverse protein-variant pools from only a few low-cost synthesis reactions. However, selecting DCs for sets of sequences that covary at multiple positions dramatically increases the difficulty of designing a DC library and leads to the creation of many undesired variants that can quickly outstrip screening capacity. Results We introduce a novel algorithm for total DC library optimization, degenerate codon design (DeCoDe), based on integer linear programming. DeCoDe significantly outperforms state-of-the-art DC optimization algorithms and scales well to more than a hundred proteins sharing complex patterns of covariation (e.g. the lab-derived avGFP lineage). Moreover, DeCoDe is, to our knowledge, the first DC design algorithm with the capability to encode mixed-length protein libraries. We anticipate DeCoDe to be broadly useful for a variety of library generation problems, ranging from protein engineering attempts that leverage mutual information to the reconstruction of ancestral protein states. Availability and implementation github.com/OrensteinLab/DeCoDe. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Maarten J.M.F Reijnders

AbstractBackgroundProtein function prediction is an important part of bioinformatics and genomics studies. There are many different predictors available, however most of these are in the form of web-servers instead of open-source locally installable versions. Such local versions are necessary to perform large scale genomics studies due to the presence of limitations imposed by web servers such as queues, prediction speed, and updatability of databases.MethodsThis paper describes Wei2GO: a weighted sequence similarity and python-based open-source protein function prediction software. It uses DIAMOND and HMMScan sequence alignment searches against the UniProtKB and Pfam databases respectively, transfers Gene Ontology terms from the reference protein to the query protein, and uses a weighing algorithm to calculate a score for the Gene Ontology annotations.ResultsWei2GO is compared against the Argot2 and Argot2.5 web servers, which use a similar concept, and DeepGOPlus which acts as a reference. Wei2GO shows an increase in performance according to precision and recall curves, Fmax scores, and Smin scores for biological process and molecular function ontologies. Computational time compared to Argot2 and Argot2.5 is decreased from several hours to several minutes.AvailabilityWei2GO is written in Python 3, and can be found at https://gitlab.com/mreijnders/Wei2GO


2019 ◽  
Vol 36 (8) ◽  
pp. 2429-2437 ◽  
Author(s):  
Xiaoqiang Huang ◽  
Wei Zheng ◽  
Robin Pearce ◽  
Yang Zhang

Abstract Motivation Most proteins perform their biological functions through interactions with other proteins in cells. Amino acid mutations, especially those occurring at protein interfaces, can change the stability of protein–protein interactions (PPIs) and impact their functions, which may cause various human diseases. Quantitative estimation of the binding affinity changes (ΔΔGbind) caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses. Results We present SSIPe, which combines protein interface profiles, collected from structural and sequence homology searches, with a physics-based energy function for accurate ΔΔGbind estimation. To offset the statistical limits of the PPI structure and sequence databases, amino acid-specific pseudocounts were introduced to enhance the profile accuracy. SSIPe was evaluated on large-scale experimental data containing 2204 mutations from 177 proteins, where training and test datasets were stringently separated with the sequence identity between proteins from the two datasets below 30%. The Pearson correlation coefficient between estimated and experimental ΔΔGbind was 0.61 with a root-mean-square-error of 1.93 kcal/mol, which was significantly better than the other methods. Detailed data analyses revealed that the major advantage of SSIPe over other traditional approaches lies in the novel combination of the physical energy function with the new knowledge-based interface profile. SSIPe also considerably outperformed a former profile-based method (BindProfX) due to the newly introduced sequence profiles and optimized pseudocount technique that allows for consideration of amino acid-specific prior mutation probabilities. Availability and implementation Web-server/standalone program, source code and datasets are freely available at https://zhanglab.ccmb.med.umich.edu/SSIPe and https://github.com/tommyhuangthu/SSIPe. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Author(s):  
Nicole E. Wheeler ◽  
Lars Barquist ◽  
Robert A. Kingsley ◽  
Paul P. Gardner

AbstractMotivationNext generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics.ResultsWe present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica. We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms.AvailabilityA program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/[email protected], [email protected] informationSupplementary data are available at BioRxiv online.


2010 ◽  
Vol 08 (02) ◽  
pp. 357-376 ◽  
Author(s):  
ARTEM SOKOLOV ◽  
ASA BEN-HUR

Protein function prediction is an active area of research in bioinformatics. Yet, the transfer of annotation on the basis of sequence or structural similarity remains widely used as an annotation method. Most of today's machine learning approaches reduce the problem to a collection of binary classification problems: whether a protein performs a particular function, sometimes with a post-processing step to combine the binary outputs. We propose a method that directly predicts a full functional annotation of a protein by modeling the structure of the Gene Ontology hierarchy in the framework of kernel methods for structured-output spaces. Our empirical results show improved performance over a BLAST nearest-neighbor method, and over algorithms that employ a collection of binary classifiers as measured on the Mousefunc benchmark dataset.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hafida Bouziane ◽  
Abdallah Chouarfia

AbstractTo date, many proteins generated by large-scale genome sequencing projects are still uncharacterized and subject to intensive investigations by both experimental and computational means. Knowledge of protein subcellular localization (SCL) is of key importance for protein function elucidation. However, it remains a challenging task, especially for multiple sites proteins known to shuttle between cell compartments to perform their proper biological functions and proteins which do not have significant homology to proteins of known subcellular locations. Due to their low-cost and reasonable accuracy, machine learning-based methods have gained much attention in this context with the availability of a plethora of biological databases and annotated proteins for analysis and benchmarking. Various predictive models have been proposed to tackle the SCL problem, using different protein sequence features pertaining to the subcellular localization, however, the overwhelming majority of them focuses on single localization and cover very limited cellular locations. The prediction was basically established on sorting signals, amino acids compositions, and homology. To improve the prediction quality, focus is actually on knowledge information extracted from annotation databases, such as protein–protein interactions and Gene Ontology (GO) functional domains annotation which has been recently a widely adopted and essential information for learning systems. To deal with such problem, in the present study, we considered SCL prediction task as a multi-label learning problem and tried to label both single site and multiple sites unannotated bacterial protein sequences by mining proteins homology relationships using both GO terms of protein homologs and PSI-BLAST profiles. The experiments using 5-fold cross-validation tests on the benchmark datasets showed a significant improvement on the results obtained by the proposed consensus multi-label prediction model which discriminates six compartments for Gram-negative and five compartments for Gram-positive bacterial proteins.


2019 ◽  
Vol 35 (14) ◽  
pp. i417-i426 ◽  
Author(s):  
Erin K Molloy ◽  
Tandy Warnow

Abstract Motivation At RECOMB-CG 2018, we presented NJMerge and showed that it could be used within a divide-and-conquer framework to scale computationally intensive methods for species tree estimation to larger datasets. However, NJMerge has two significant limitations: it can fail to return a tree and, when used within the proposed divide-and-conquer framework, has O(n5) running time for datasets with n species. Results Here we present a new method called ‘TreeMerge’ that improves on NJMerge in two ways: it is guaranteed to return a tree and it has dramatically faster running time within the same divide-and-conquer framework—only O(n2) time. We use a simulation study to evaluate TreeMerge in the context of multi-locus species tree estimation with two leading methods, ASTRAL-III and RAxML. We find that the divide-and-conquer framework using TreeMerge has a minor impact on species tree accuracy, dramatically reduces running time, and enables both ASTRAL-III and RAxML to complete on datasets (that they would otherwise fail on), when given 64 GB of memory and 48 h maximum running time. Thus, TreeMerge is a step toward a larger vision of enabling researchers with limited computational resources to perform large-scale species tree estimation, which we call Phylogenomics for All. Availability and implementation TreeMerge is publicly available on Github (http://github.com/ekmolloy/treemerge). Supplementary information Supplementary data are available at Bioinformatics online.


PLoS Genetics ◽  
2011 ◽  
Vol 7 (10) ◽  
pp. e1002302 ◽  
Author(s):  
Samir Merabet ◽  
Isma Litim-Mecheri ◽  
Daniel Karlsson ◽  
Richa Dixit ◽  
Mehdi Saadaoui ◽  
...  

Author(s):  
Ting-Hsuan Wang ◽  
Cheng-Ching Huang ◽  
Jui-Hung Hung

Abstract Motivation Cross-sample comparisons or large-scale meta-analyses based on the next generation sequencing (NGS) involve replicable and universal data preprocessing, including removing adapter fragments in contaminated reads (i.e. adapter trimming). While modern adapter trimmers require users to provide candidate adapter sequences for each sample, which are sometimes unavailable or falsely documented in the repositories (such as GEO or SRA), large-scale meta-analyses are therefore jeopardized by suboptimal adapter trimming. Results Here we introduce a set of fast and accurate adapter detection and trimming algorithms that entail no a priori adapter sequences. These algorithms were implemented in modern C++ with SIMD and multithreading to accelerate its speed. Our experiments and benchmarks show that the implementation (i.e. EARRINGS), without being given any hint of adapter sequences, can reach comparable accuracy and higher throughput than that of existing adapter trimmers. EARRINGS is particularly useful in meta-analyses of a large batch of datasets and can be incorporated in any sequence analysis pipelines in all scales. Availability and implementation EARRINGS is open-source software and is available at https://github.com/jhhung/EARRINGS. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document