scholarly journals Probabilistic graphlets capture biological function in probabilistic molecular networks

2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i804-i812
Author(s):  
Sergio Doria-Belenguer ◽  
Markus K. Youssef ◽  
René Böttcher ◽  
Noël Malod-Dognin ◽  
Nataša Pržulj

Abstract Motivation Molecular interactions have been successfully modeled and analyzed as networks, where nodes represent molecules and edges represent the interactions between them. These networks revealed that molecules with similar local network structure also have similar biological functions. The most sensitive measures of network structure are based on graphlets. However, graphlet-based methods thus far are only applicable to unweighted networks, whereas real-world molecular networks may have weighted edges that can represent the probability of an interaction occurring in the cell. This information is commonly discarded when applying thresholds to generate unweighted networks, which may lead to information loss. Results We introduce probabilistic graphlets as a tool for analyzing the local wiring patterns of probabilistic networks. To assess their performance compared to unweighted graphlets, we generate synthetic networks based on different well-known random network models and edge probability distributions and demonstrate that probabilistic graphlets outperform their unweighted counterparts in distinguishing network structures. Then we model different real-world molecular interaction networks as weighted graphs with probabilities as weights on edges and we analyze them with our new weighted graphlets-based methods. We show that due to their probabilistic nature, probabilistic graphlet-based methods more robustly capture biological information in these data, while simultaneously showing a higher sensitivity to identify condition-specific functions compared to their unweighted graphlet-based method counterparts. Availabilityand implementation Our implementation of probabilistic graphlets is available at https://github.com/Serdobe/Probabilistic_Graphlets. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i464-i473
Author(s):  
Kapil Devkota ◽  
James M Murphy ◽  
Lenore J Cowen

Abstract Motivation One of the core problems in the analysis of biological networks is the link prediction problem. In particular, existing interactions networks are noisy and incomplete snapshots of the true network, with many true links missing because those interactions have not yet been experimentally observed. Methods to predict missing links have been more extensively studied for social than for biological networks; it was recently argued that there is some special structure in protein–protein interaction (PPI) network data that might mean that alternate methods may outperform the best methods for social networks. Based on a generalization of the diffusion state distance, we design a new embedding-based link prediction method called global and local integrated diffusion embedding (GLIDE). GLIDE is designed to effectively capture global network structure, combined with alternative network type-specific customized measures that capture local network structure. We test GLIDE on a collection of three recently curated human biological networks derived from the 2016 DREAM disease module identification challenge as well as a classical version of the yeast PPI network in rigorous cross validation experiments. Results We indeed find that different local network structure is dominant in different types of biological networks. We find that the simple local network measures are dominant in the highly connected network core between hub genes, but that GLIDE’s global embedding measure adds value in the rest of the network. For example, we make GLIDE-based link predictions from genes known to be involved in Crohn’s disease, to genes that are not known to have an association, and make some new predictions, finding support in other network data and the literature. Availability and implementation GLIDE can be downloaded at https://bitbucket.org/kap_devkota/glide. Supplementary information Supplementary data are available at Bioinformatics online.


2005 ◽  
Vol 08 (02n03) ◽  
pp. 261-273 ◽  
Author(s):  
ANDREAS GRÖNLUND ◽  
PETTER HOLME

We investigate the behavior of a threshold model for the spreading of fads and similar phenomena in society. The model gives the fad dynamics and is intended to be confined to an underlying network structure. We investigate the whole parameter space of the fad dynamics on three types of network models. The dynamics we discover is rich and highly dependent on the underlying network structure. For some range of the parameter space, for all types of substrate networks, there are a great variety of sizes and life-lengths of the fads — what one sees in real-world social and economical systems.


Author(s):  
Xin Sun ◽  
Zenghui Song ◽  
Junyu Dong ◽  
Yongbo Yu ◽  
Claudia Plant ◽  
...  

Network-structured data is becoming increasingly popular in many applications. However, these data present great challenges to feature engineering due to its high non-linearity and sparsity. The issue on how to transfer the link-connected nodes of the huge network into feature representations is critical. As basic properties of the real-world networks, the local and global structure can be reflected by dynamical transfer behaviors from node to node. In this work, we propose a deep embedding framework to preserve the transfer possibilities among the network nodes. We first suggest a degree-weight biased random walk model to capture the transfer behaviors of the network. Then a deep embedding framework is introduced to preserve the transfer possibilities among the nodes. A network structure embedding layer is added into the conventional Long Short-Term Memory Network to utilize its sequence prediction ability. To keep the local network neighborhood, we further perform a Laplacian supervised space optimization on the embedding feature representations. Experimental studies are conducted on various real-world datasets including social networks and citation networks. The results show that the learned representations can be effectively used as features in a variety of tasks, such as clustering, visualization and classification, and achieve promising performance compared with state-of-the-art models.


Author(s):  
S. R. Herd ◽  
P. Chaudhari

Electron diffraction and direct transmission have been used extensively to study the local atomic arrangement in amorphous solids and in particular Ge. Nearest neighbor distances had been calculated from E.D. profiles and the results have been interpreted in terms of the microcrystalline or the random network models. Direct transmission electron microscopy appears the most direct and accurate method to resolve this issue since the spacial resolution of the better instruments are of the order of 3Å. In particular the tilted beam interference method is used regularly to show fringes corresponding to 1.5 to 3Å lattice planes in crystals as resolution tests.


2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jill de Ron ◽  
Eiko I. Fried ◽  
Sacha Epskamp

Abstract Background In clinical research, populations are often selected on the sum-score of diagnostic criteria such as symptoms. Estimating statistical models where a subset of the data is selected based on a function of the analyzed variables introduces Berkson's bias, which presents a potential threat to the validity of findings in the clinical literature. The aim of the present paper is to investigate the effect of Berkson's bias on the performance of the two most commonly used psychological network models: the Gaussian Graphical Model (GGM) for continuous and ordinal data, and the Ising Model for binary data. Methods In two simulation studies, we test how well the two models recover a true network structure when estimation is based on a subset of the data typically seen in clinical studies. The network is based on a dataset of 2807 patients diagnosed with major depression, and nodes in the network are items from the Hamilton Rating Scale for Depression (HRSD). The simulation studies test different scenarios by varying (1) sample size and (2) the cut-off value of the sum-score which governs the selection of participants. Results The results of both studies indicate that higher cut-off values are associated with worse recovery of the network structure. As expected from the Berkson's bias literature, selection reduced recovery rates by inducing negative connections between the items. Conclusion Our findings provide evidence that Berkson's bias is a considerable and underappreciated problem in the clinical network literature. Furthermore, we discuss potential solutions to circumvent Berkson's bias and their pitfalls.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marios Papachristou

AbstractIn this paper we devise a generative random network model with core–periphery properties whose core nodes act as sublinear dominators, that is, if the network has n nodes, the core has size o(n) and dominates the entire network. We show that instances generated by this model exhibit power law degree distributions, and incorporates small-world phenomena. We also fit our model in a variety of real-world networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luca Gamberi ◽  
Yanik-Pascal Förster ◽  
Evan Tzanis ◽  
Alessia Annibale ◽  
Pierpaolo Vivo

AbstractAn important question in representative democracies is how to determine the optimal parliament size of a given country. According to an old conjecture, known as the cubic root law, there is a fairly universal power-law relation, with an exponent equal to 1/3, between the size of an elected parliament and the country’s population. Empirical data in modern European countries support such universality but are consistent with a larger exponent. In this work, we analyse this intriguing regularity using tools from complex networks theory. We model the population of a democratic country as a random network, drawn from a growth model, where each node is assigned a constituency membership sampled from an available set of size D. We calculate analytically the modularity of the population and find that its functional relation with the number of constituencies is strongly non-monotonic, exhibiting a maximum that depends on the population size. The criterion of maximal modularity allows us to predict that the number of representatives should scale as a power-law in the size of the population, a finding that is qualitatively confirmed by the empirical analysis of real-world data.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1302
Author(s):  
Younggi Hong ◽  
Munju Goh

Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has a three-dimensional random network, it possesses thermal properties similar to those of a typical heat insulator. Recently, there has been substantial interest in controlling the network structure of EP to create new functionalities. Indeed, the modified EP, represented as liquid crystalline epoxy (LCE), is considered promising for producing novel functionalities, which cannot be obtained from conventional EPs, by replacing the random network structure with an oriented one. In this paper, we review the current progress in the field of LCEs and their application to highly thermally conductive composite materials.


Sign in / Sign up

Export Citation Format

Share Document