scholarly journals TreeMap: a structured approach to fine mapping of eQTL variants

Author(s):  
Li Liu ◽  
Pramod Chandrashekar ◽  
Biao Zeng ◽  
Maxwell D Sanderford ◽  
Sudhir Kumar ◽  
...  

Abstract Motivation Expression quantitative trait loci (eQTL) harbor genetic variants modulating gene transcription. Fine mapping of regulatory variants at these loci is a daunting task due to the juxtaposition of causal and linked variants at a locus as well as the likelihood of interactions among multiple variants. This problem is exacerbated in genes with multiple cis-acting eQTL, where superimposed effects of adjacent loci further distort the association signals. Results We developed a novel algorithm, TreeMap, that identifies putative causal variants in cis-eQTL accounting for multisite effects and genetic linkage at a locus. Guided by the hierarchical structure of linkage disequilibrium, TreeMap performs an organized search for individual and multiple causal variants. Via extensive simulations, we show that TreeMap detects co-regulating variants more accurately than current methods. Furthermore, its high computational efficiency enables genome-wide analysis of long-range eQTL. We applied TreeMap to GTEx data of brain hippocampus samples and transverse colon samples to search for eQTL in gene bodies and in 4 Mbps gene-flanking regions, discovering numerous distal eQTL. Furthermore, we found concordant distal eQTL that were present in both brain and colon samples, implying long-range regulation of gene expression. Availability and implementation TreeMap is available as an R package enabled for parallel processing at https://github.com/liliulab/treemap. Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Author(s):  
Li Liu ◽  
Pramod Chandrashekar ◽  
Biao Zeng ◽  
Maxwell D. Sanderford ◽  
Sudhir Kumar ◽  
...  

AbstractMotivationExpression quantitative trait loci (eQTL) harbor genetic variants modulating gene transcription. Fine mapping of regulatory variants at these loci is a daunting task due to the juxtaposition of causal and linked variants at a locus as well as the likelihood of interactions among multiple variants. This problem is exacerbated in genes with multiple cis-acting eQTL, where superimposed effects of adjacent loci further distort the association signals.ResultsWe developed a novel algorithm, TreeMap, that identifies putative causal variants in cis-eQTL accounting for multisite effects and genetic linkage at a locus. Guided by the hierarchical structure of linkage disequilibrium, TreeMap performs an organized search for individual and multiple causal variants. Via extensive simulations, we show that TreeMap detects co-regulating variants more accurately than current methods. Furthermore, its high computational efficiency enables genome-wide analysis of long-range eQTL. We applied TreeMap to GTEx data of brain hippocampus samples and transverse colon samples to search for eQTL in gene bodies and in 4 Mbps gene-flanking regions, discovering numerous distal eQTL. Furthermore, we found concordant distal eQTL that were present in both brain and colon samples, implying long-range regulation of gene expression.AvailabilityTreeMap is available as an R package enabled for parallel processing at https://github.com/liliulab/treemap.


2021 ◽  
Author(s):  
Matteo D'Antonio ◽  
Timothy D. Arthur ◽  
Jennifer P. Nguyen ◽  
Hiroko Matsui ◽  
Agnieszka D'Antonio-Chronowska ◽  
...  

The causal variants and genes underlying thousands of cardiac GWAS signals have yet to be identified. To address this issue, we leveraged spatiotemporal information on 966 RNA-seq cardiac samples and performed an expression quantitative trait locus (eQTL) analysis detecting ~26,000 eQTL signals associated with more than 11,000 eGenes and 7,000 eIsoforms. Approximately 2,500 eQTLs were associated with specific cardiac stages, organs, tissues and/or cell types. Colocalization and fine mapping of eQTL and GWAS signals of five cardiac traits in the UK BioBank identified variants with high posterior probabilities for being causal in 210 GWAS loci. Over 50 of these loci represent novel functionally annotated cardiac GWAS signals. Our study provides a comprehensive resource mapping regulatory variants that function in spatiotemporal context-specific manners to regulate cardiac gene expression, which can be used to functionally annotate genomic loci associated with cardiac traits and disease.


2018 ◽  
Vol 35 (11) ◽  
pp. 1901-1906 ◽  
Author(s):  
Mary D Fortune ◽  
Chris Wallace

Abstract Motivation Methods for analysis of GWAS summary statistics have encouraged data sharing and democratized the analysis of different diseases. Ideal validation for such methods is application to simulated data, where some ‘truth’ is known. As GWAS increase in size, so does the computational complexity of such evaluations; standard practice repeatedly simulates and analyses genotype data for all individuals in an example study. Results We have developed a novel method based on an alternative approach, directly simulating GWAS summary data, without individual data as an intermediate step. We mathematically derive the expected statistics for any set of causal variants and their effect sizes, conditional upon control haplotype frequencies (available from public reference datasets). Simulation of GWAS summary output can be conducted independently of sample size by simulating random variates about these expected values. Across a range of scenarios, our method, produces very similar output to that from simulating individual genotypes with a substantial gain in speed even for modest sample sizes. Fast simulation of GWAS summary statistics will enable more complete and rapid evaluation of summary statistic methods as well as opening new potential avenues of research in fine mapping and gene set enrichment analysis. Availability and implementation Our method is available under a GPL license as an R package from http://github.com/chr1swallace/simGWAS. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Victor Barreto Mesquita ◽  
Florêncio Mendes Oliveira Filho ◽  
Paulo Canas Rodrigues

Abstract Motivation The quantification of long-range correlation of electroencephalogram (EEG) signals is an important research direction for its relevance in helping understanding the brain activity. Epileptic seizures have been studied in the past years where different non-linear statistical approaches have been employed to understand the relationship between the EEG signal and the epilepitc discharge. One of the most widely used method for to analyse long memory processes is the detrended fuctuation analysis (DFA). However, no objective and pragmatic methods have been developed to detect crossover points and reference channels in DFA. Results In this paper, we propose: (i) two automatic approaches that successfully detect crossover points in DFA related methods on the log-log plot; and (ii) a criteria to choose the reference channel for the log-amplitude function. Moreover, the DFA is applied to EEG signals of 10 epileptic patients collected from the CHB-MIT database, being the log-amplitude function used to compare the different brain hemispheres by making use of the methodology proposed in the paper. The existence of long-range power-law correlations is demonstrated and indicates that the EEG signals of epileptic patients present three well defined regions with the first region showing a 1/f 1/f noise (pink noise) for seven subjects and a random walk behaviour for three subjects. The second and third regions show anti-persistence behaviour. Moreover, the results of the log-amplitude function were divided in two groups: (i) the first, including seven subjects, where the increase in the scales results in an increase in the fluctuation in the the frontal channels; and (ii) the second, included three subjects, where the fluctuation for large scales are greater for the parietal channels. Availability The functions used in this paper are available in the R package DFA (Mesquita et al., 2020). Supplementary information Supplementary information are available at Bioinformatics online.


2018 ◽  
Author(s):  
Mary D. Fortune ◽  
Chris Wallace

AbstractMotivationMethods for analysis of GWAS summary statistics have encouraged data sharing and democratised the analysis of different diseases. Ideal validation for such methods is application to simulated data, where some “truth” is known. As GWAS increase in size, so does the computational complexity of such evaluations; standard practice repeatedly simulates and analyses genotype data for all individuals in an example study.ResultsWe have developed a novel method based on an alternative approach, directly simulating GWAS summary data, without individual data as an intermediate step. We mathematically derive the expected statistics for any set of causal variants and their effect sizes, conditional upon control haplotype frequencies (available from public reference datasets). Simulation of GWAS summary output can be conducted independently of sample size by simulating random variates about these expected values. Across a range of scenarios, our method, produces very similar output to that from simulating individual genotypes with a substantial gain in speed even for modest sample sizes. Fast simulation of GWAS summary statistics will enable more complete and rapid evaluation of summary statistic methods as well as opening new potential avenues of research in fine mapping and gene set enrichment analysis.Availability and ImplementationOur method is available under a GPL license as an R package from http://github.com/chr1swallace/[email protected] InformationSupplementary Information is appended.


2018 ◽  
Author(s):  
Ashley K. Tehranchi ◽  
Brian Hie ◽  
Michael Dacre ◽  
Irene M. Kaplow ◽  
Kade P Pettie ◽  
...  

AbstractGenome-wide association studies (GWAS) are a powerful approach for connecting genotype to phenotype. Most GWAS hits are located in cis-regulatory regions, but the underlying causal variants and their molecular mechanisms remain unknown. To better understand human cis-regulatory variation, we mapped quantitative trait loci for chromatin accessibility (caQTLs)—a key step in cis-regulation—in 1000 individuals from 10 diverse populations. Most caQTLs were shared across populations, allowing us to leverage the genetic diversity to fine-map candidate causal regulatory variants, several thousand of which have been previously implicated in GWAS. In addition, many caQTLs that affect the expression of distal genes also alter the landscape of long-range chromosomal interactions, suggesting a mechanism for long-range expression QTLs. In sum, our results show that molecular QTL mapping integrated across diverse populations provides a high-resolution view of how worldwide human genetic variation affects chromatin accessibility, gene expression, and phenotype.


Author(s):  
Irzam Sarfraz ◽  
Muhammad Asif ◽  
Joshua D Campbell

Abstract Motivation R Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for storing one or more matrix-like assays along with associated row and column data. These objects have been used to facilitate the storage and analysis of high-throughput genomic data generated from technologies such as single-cell RNA sequencing. One common computational task in many genomics analysis workflows is to perform subsetting of the data matrix before applying down-stream analytical methods. For example, one may need to subset the columns of the assay matrix to exclude poor-quality samples or subset the rows of the matrix to select the most variable features. Traditionally, a second object is created that contains the desired subset of assay from the original object. However, this approach is inefficient as it requires the creation of an additional object containing a copy of the original assay and leads to challenges with data provenance. Results To overcome these challenges, we developed an R package called ExperimentSubset, which is a data container that implements classes for efficient storage and streamlined retrieval of assays that have been subsetted by rows and/or columns. These classes are able to inherently provide data provenance by maintaining the relationship between the subsetted and parent assays. We demonstrate the utility of this package on a single-cell RNA-seq dataset by storing and retrieving subsets at different stages of the analysis while maintaining a lower memory footprint. Overall, the ExperimentSubset is a flexible container for the efficient management of subsets. Availability and implementation ExperimentSubset package is available at Bioconductor: https://bioconductor.org/packages/ExperimentSubset/ and Github: https://github.com/campbio/ExperimentSubset. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Arnaud Liehrmann ◽  
Guillem Rigaill ◽  
Toby Dylan Hocking

Abstract Background Histone modification constitutes a basic mechanism for the genetic regulation of gene expression. In early 2000s, a powerful technique has emerged that couples chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq). This technique provides a direct survey of the DNA regions associated to these modifications. In order to realize the full potential of this technique, increasingly sophisticated statistical algorithms have been developed or adapted to analyze the massive amount of data it generates. Many of these algorithms were built around natural assumptions such as the Poisson distribution to model the noise in the count data. In this work we start from these natural assumptions and show that it is possible to improve upon them. Results Our comparisons on seven reference datasets of histone modifications (H3K36me3 & H3K4me3) suggest that natural assumptions are not always realistic under application conditions. We show that the unconstrained multiple changepoint detection model with alternative noise assumptions and supervised learning of the penalty parameter reduces the over-dispersion exhibited by count data. These models, implemented in the R package CROCS (https://github.com/aLiehrmann/CROCS), detect the peaks more accurately than algorithms which rely on natural assumptions. Conclusion The segmentation models we propose can benefit researchers in the field of epigenetics by providing new high-quality peak prediction tracks for H3K36me3 and H3K4me3 histone modifications.


Author(s):  
Darawan Rinchai ◽  
Jessica Roelands ◽  
Mohammed Toufiq ◽  
Wouter Hendrickx ◽  
Matthew C Altman ◽  
...  

Abstract Motivation We previously described the construction and characterization of generic and reusable blood transcriptional module repertoires. More recently we released a third iteration (“BloodGen3” module repertoire) that comprises 382 functionally annotated gene sets (modules) and encompasses 14,168 transcripts. Custom bioinformatic tools are needed to support downstream analysis, visualization and interpretation relying on such fixed module repertoires. Results We have developed and describe here a R package, BloodGen3Module. The functions of our package permit group comparison analyses to be performed at the module-level, and to display the results as annotated fingerprint grid plots. A parallel workflow for computing module repertoire changes for individual samples rather than groups of samples is also available; these results are displayed as fingerprint heatmaps. An illustrative case is used to demonstrate the steps involved in generating blood transcriptome repertoire fingerprints of septic patients. Taken together, this resource could facilitate the analysis and interpretation of changes in blood transcript abundance observed across a wide range of pathological and physiological states. Availability The BloodGen3Module package and documentation are freely available from Github: https://github.com/Drinchai/BloodGen3Module Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingbo S. Wang ◽  
David R. Kelley ◽  
Jacob Ulirsch ◽  
Masahiro Kanai ◽  
Shuvom Sadhuka ◽  
...  

AbstractThe large majority of variants identified by GWAS are non-coding, motivating detailed characterization of the function of non-coding variants. Experimental methods to assess variants’ effect on gene expressions in native chromatin context via direct perturbation are low-throughput. Existing high-throughput computational predictors thus have lacked large gold standard sets of regulatory variants for training and validation. Here, we leverage a set of 14,807 putative causal eQTLs in humans obtained through statistical fine-mapping, and we use 6121 features to directly train a predictor of whether a variant modifies nearby gene expression. We call the resulting prediction the expression modifier score (EMS). We validate EMS by comparing its ability to prioritize functional variants with other major scores. We then use EMS as a prior for statistical fine-mapping of eQTLs to identify an additional 20,913 putatively causal eQTLs, and we incorporate EMS into co-localization analysis to identify 310 additional candidate genes across UK Biobank phenotypes.


Sign in / Sign up

Export Citation Format

Share Document