GUESS: projecting machine learning scores to well-calibrated probability estimates for clinical decision-making

2018 ◽  
Vol 35 (14) ◽  
pp. 2458-2465 ◽  
Author(s):  
Johanna Schwarz ◽  
Dominik Heider

Abstract Motivation Clinical decision support systems have been applied in numerous fields, ranging from cancer survival toward drug resistance prediction. Nevertheless, clinical decision support systems typically have a caveat: many of them are perceived as black-boxes by non-experts and, unfortunately, the obtained scores cannot usually be interpreted as class probability estimates. In probability-focused medical applications, it is not sufficient to perform well with regards to discrimination and, consequently, various calibration methods have been developed to enable probabilistic interpretation. The aims of this study were (i) to develop a tool for fast and comparative analysis of different calibration methods, (ii) to demonstrate their limitations for the use on clinical data and (iii) to introduce our novel method GUESS. Results We compared the performances of two different state-of-the-art calibration methods, namely histogram binning and Bayesian Binning in Quantiles, as well as our novel method GUESS on both, simulated and real-world datasets. GUESS demonstrated calibration performance comparable to the state-of-the-art methods and always retained accurate class discrimination. GUESS showed superior calibration performance in small datasets and therefore may be an optimal calibration method for typical clinical datasets. Moreover, we provide a framework (CalibratR) for R, which can be used to identify the most suitable calibration method for novel datasets in a timely and efficient manner. Using calibrated probability estimates instead of original classifier scores will contribute to the acceptance and dissemination of machine learning based classification models in cost-sensitive applications, such as clinical research. Availability and implementation GUESS as part of CalibratR can be downloaded at CRAN.

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1728
Author(s):  
Goran Medic ◽  
Melodi Kosaner Kließ ◽  
Louis Atallah ◽  
Jochen Weichert ◽  
Saswat Panda ◽  
...  

Background: Clinical decision support (CDS) systems have emerged as tools providing intelligent decision making to address challenges of critical care. CDS systems can be based on existing guidelines or best practices; and can also utilize machine learning to provide a diagnosis, recommendation, or therapy course. Methods: This research aimed to identify evidence-based study designs and outcome measures to determine the clinical effectiveness of clinical decision support systems in the detection and prediction of hemodynamic instability, respiratory distress, and infection within critical care settings. PubMed, ClinicalTrials.gov and Cochrane Database of Systematic Reviews were systematically searched to identify primary research published in English between 2013 and 2018. Studies conducted in the USA, Canada, UK, Germany and France with more than 10 participants per arm were included. Results: In studies on hemodynamic instability, the prediction and management of septic shock were the most researched topics followed by the early prediction of heart failure. For respiratory distress, the most popular topics were pneumonia detection and prediction followed by pulmonary embolisms. Given the importance of imaging and clinical notes, this area combined Machine Learning with image analysis and natural language processing. In studies on infection, the most researched areas were the detection, prediction, and management of sepsis, surgical site infections, as well as acute kidney injury. Overall, a variety of Machine Learning algorithms were utilized frequently, particularly support vector machines, boosting techniques, random forest classifiers and neural networks. Sensitivity, specificity, and ROC AUC were the most frequently reported performance measures. Conclusion: This review showed an increasing use of Machine Learning for CDS in all three areas. Large datasets are required for training these algorithms; making it imperative to appropriately address, challenges such as class imbalance, correct labelling of data and missing data. Recommendations are formulated for the development and successful adoption of CDS systems.


2020 ◽  
Author(s):  
Victor Silva ◽  
Amanda Days Ramos Novo ◽  
Damires Souza ◽  
Alex Rêgo

Clinical decision support systems is a research area in which Machine Learning (ML) techniques can be applied. Nevertheless, specifically in assisting pneumonia decision making, the use of ML has not been so expressive. To help matters, this work aims to contribute to the evolution of the intersection of such areas by presenting a Systematic Review of the Literature. It provides results which may help to identify, interpret and evaluate how ML techniques have been applied and some research enhancements yet to be done.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1728
Author(s):  
Goran Medic ◽  
Melodi Kosaner Kließ ◽  
Louis Atallah ◽  
Jochen Weichert ◽  
Saswat Panda ◽  
...  

Background: Clinical decision support (CDS) systems have emerged as tools providing intelligent decision making to address challenges of critical care. CDS systems can be based on existing guidelines or best practices; and can also utilize machine learning to provide a diagnosis, recommendation, or therapy course. Methods: This research aimed to identify evidence-based study designs and outcome measures to determine the clinical effectiveness of clinical decision support systems in the detection and prediction of hemodynamic instability, respiratory distress, and infection within critical care settings. PubMed, ClinicalTrials.gov and Cochrane Database of Systematic Reviews were systematically searched to identify primary research published in English between 2013 and 2018. Studies conducted in the USA, Canada, UK, Germany and France with more than 10 participants per arm were included. Results: In studies on hemodynamic instability, the prediction and management of septic shock were the most researched topics followed by the early prediction of heart failure. For respiratory distress, the most popular topics were pneumonia detection and prediction followed by pulmonary embolisms. Given the importance of imaging and clinical notes, this area combined Machine Learning with image analysis and natural language processing. In studies on infection, the most researched areas were the detection, prediction, and management of sepsis, surgical site infections, as well as acute kidney injury. Overall, a variety of Machine Learning algorithms were utilized frequently, particularly support vector machines, boosting techniques, random forest classifiers and neural networks. Sensitivity, specificity, and ROC AUC were the most frequently reported performance measures. Conclusion: This review showed an increasing use of Machine Learning for CDS in all three areas. Large datasets are required for training these algorithms; making it imperative to appropriately address, challenges such as class imbalance, correct labelling of data and missing data. Recommendations are formulated for the development and successful adoption of CDS systems.


2017 ◽  
Vol 26 (01) ◽  
pp. 133-137
Author(s):  
V. Koutkias ◽  
J. Bouaud

Summary Objectives: To summarize recent research and select the best papers published in 2016 in the field of computerized clinical decision support for the Decision Support section of the IMIA yearbook. Methods: A literature review was performed by searching two bibliographic databases for papers related to clinical decision support systems (CDSSs). The aim was to identify a list of candidate best papers from the retrieved papers that were then peer-reviewed by external reviewers. A consensus meeting of the IMIA editorial team finally selected the best papers on the basis of all reviews and section editor evaluation. Results: Among the 1,145 retrieved papers, the entire review process resulted in the selection of four best papers. The first paper describes machine learning models used to predict breast cancer multidisciplinary team decisions and compares them with two predictors based on guideline knowledge. The second paper introduces a linked-data approach for publication, discovery, and interoperability of CDSSs. The third paper assessed the variation in high-priority drug-drug interaction (DDI) alerts across 14 Electronic Health Record systems, operating in different institutions in the US. The fourth paper proposes a generic framework for modeling multiple concurrent guidelines and detecting their recommendation interactions using semantic web technologies. Conclusions: The process of identifying and selecting best papers in the domain of CDSSs demonstrated that the research in this field is very active concerning diverse dimensions, such as the types of CDSSs, e.g. guideline-based, machine-learning-based, knowledge-fusion-based, etc., and addresses challenging areas, such as the concurrent application of multiple guidelines for comorbid patients, the resolution of interoperability issues, and the evaluation of CDSSs. Nevertheless, this process also showed that CDSSs are not yet fully part of the digitalized healthcare ecosystem. Many challenges remain to be faced with regard to the evidence of their output, the dissemination of their technologies, as well as their adoption for better and safer healthcare delivery.


2017 ◽  
Vol 26 (01) ◽  
pp. 133-138 ◽  
Author(s):  
V. Koutkias ◽  
J. Bouaud

Summary Objectives: To summarize recent research and select the best papers published in 2016 in the field of computerized clinical decision support for the Decision Support section of the IMIA yearbook. Methods: A literature review was performed by searching two bibliographic databases for papers related to clinical decision support systems (CDSSs). The aim was to identify a list of candidate best papers from the retrieved papers that were then peer-reviewed by external reviewers. A consensus meeting of the IMIA editorial team finally selected the best papers on the basis of all reviews and section editor evaluation. Results: Among the 1,145 retrieved papers, the entire review process resulted in the selection of four best papers. The first paper describes machine learning models used to predict breast cancer multidisciplinary team decisions and compares them with two predictors based on guideline knowledge. The second paper introduces a linked-data approach for publication, discovery, and interoperability of CDSSs. The third paper assessed the variation in high-priority drug-drug interaction (DDI) alerts across 14 Electronic Health Record systems, operating in different institutions in the US. The fourth paper proposes a generic framework for modeling multiple concurrent guidelines and detecting their recommendation interactions using semantic web technologies. Conclusions: The process of identifying and selecting best papers in the domain of CDSSs demonstrated that the research in this field is very active concerning diverse dimensions, such as the types of CDSSs, e.g. guideline-based, machine-learning-based, knowledge-fusion-based, etc., and addresses challenging areas, such as the concurrent application of multiple guidelines for comorbid patients, the resolution of interoperability issues, and the evaluation of CDSSs. Nevertheless, this process also showed that CDSSs are not yet fully part of the digitalized healthcare ecosystem. Many challenges remain to be faced with regard to the evidence of their output, the dissemination of their technologies, as well as their adoption for better and safer healthcare delivery.


2021 ◽  
Vol 11 (11) ◽  
pp. 5088
Author(s):  
Anna Markella Antoniadi ◽  
Yuhan Du ◽  
Yasmine Guendouz ◽  
Lan Wei ◽  
Claudia Mazo ◽  
...  

Machine Learning and Artificial Intelligence (AI) more broadly have great immediate and future potential for transforming almost all aspects of medicine. However, in many applications, even outside medicine, a lack of transparency in AI applications has become increasingly problematic. This is particularly pronounced where users need to interpret the output of AI systems. Explainable AI (XAI) provides a rationale that allows users to understand why a system has produced a given output. The output can then be interpreted within a given context. One area that is in great need of XAI is that of Clinical Decision Support Systems (CDSSs). These systems support medical practitioners in their clinic decision-making and in the absence of explainability may lead to issues of under or over-reliance. Providing explanations for how recommendations are arrived at will allow practitioners to make more nuanced, and in some cases, life-saving decisions. The need for XAI in CDSS, and the medical field in general, is amplified by the need for ethical and fair decision-making and the fact that AI trained with historical data can be a reinforcement agent of historical actions and biases that should be uncovered. We performed a systematic literature review of work to-date in the application of XAI in CDSS. Tabular data processing XAI-enabled systems are the most common, while XAI-enabled CDSS for text analysis are the least common in literature. There is more interest in developers for the provision of local explanations, while there was almost a balance between post-hoc and ante-hoc explanations, as well as between model-specific and model-agnostic techniques. Studies reported benefits of the use of XAI such as the fact that it could enhance decision confidence for clinicians, or generate the hypothesis about causality, which ultimately leads to increased trustworthiness and acceptability of the system and potential for its incorporation in the clinical workflow. However, we found an overall distinct lack of application of XAI in the context of CDSS and, in particular, a lack of user studies exploring the needs of clinicians. We propose some guidelines for the implementation of XAI in CDSS and explore some opportunities, challenges, and future research needs.


Author(s):  
Francesco Curia

AbstractClinical decision support systems (CDSS) that make use of algorithms based on intelligent systems, such as machine learning or deep learning, they suffer from the fact that often the methods used are hard to interpret and difficult to understand on how some decisions are made; the opacity of some methods, sometimes voluntary due to problems such as data privacy or the techniques used to protect intellectual property, makes these systems very complicated. Besides this series of problems, the results obtained also suffer from the poor possibility of being interpreted; in the clinical context therefore it is required that the methods used are as accurate as possible, transparent techniques and explainable results. In this work the problem of the development of cervical cancer is treated, a disease that mainly affects the female population. In order to introduce advanced machine learning techniques in a clinical decision support system that can be transparent and explainable, a robust, accurate ensemble method is presented, in terms of error and sensitivity linked to the classification of possible development of the aforementioned pathology and advanced techniques are also presented of explainability and interpretability (Explanaible Machine Learning) applied to the context of CDSS such as Lime and Shapley. The results obtained, as well as being interesting, are understandable and can be implemented in the treatment of this type of problem.


2019 ◽  
Author(s):  
Jannik Schaaf ◽  
Martin Sedlmayr ◽  
Johanna Schaefer ◽  
Holger Storf

Abstract Background Rare Diseases (RD), which are defined as diseases affecting not more than 5 out of 10,000 people, are often severe, chronic, degenerative and life-threating. A main problem is the delay in diagnosis of RD. Clinical Decision Support Systems (CDSS) for RD are software-systems to support physicians in the diagnosis of patients with RD. It would therefore be useful to get a comprehensive overview of which CDSS are available and can be used under what conditions. In this work we provide a review of current CDSS in RD and which functionality and data are used by the CDSS. Methods We searched Pubmed and Cochrane for CDSS in RD published between December 1, 2008 and December 16, 2018. Only English articles, original peer reviewed journals and conference paper describing a clinical prototype or a routine use of CDSS where included. A total of 2076 articles were found and following a screening step 16 articles (describing 13 different CDSS) were considered as relevant for the final analysis. We then described and compared the CDSS using the defined categories “functionality”, “development status”, “type of clinical data” and “system availability”. Results Three types of CDSS for RD were identified: “Machine Learning and Information retrieval”, “Web Search”, and “Phenotypic and genetic matching”. 8 of the 13 reviewed CDSS are publicly available and for use by physicians. The other remaining CDSS are clinical prototypes which have been applied in clinical studies but are not accessible to others. Only one clinical prototype online. The approaches of the CDSS differ depending on what type of clinical data is used. “Machine Learning and information retrieval” can show recommendations for a diagnosis, while Web “search CDSS” will retrieve articles from literature databases (e.g. case reports), which may provide hints for a possible Diagnosis. CDSS in “Phenotypic and genetic matching” can identify similar patients based on genetic or phenotypic data. Conclusions Different CDSS for different purposes have been established and physicians have to decide which CDSS is more accurate for a particular patient case. It remains to be seen which of the CDSS will be used and maintained in the future.


Sign in / Sign up

Export Citation Format

Share Document