Graph-based data integration from bioactive peptide databases of pharmaceutical interest: toward an organized collection enabling visual network analysis

2019 ◽  
Vol 35 (22) ◽  
pp. 4739-4747 ◽  
Author(s):  
Longendri Aguilera-Mendoza ◽  
Yovani Marrero-Ponce ◽  
Jesus A Beltran ◽  
Roberto Tellez Ibarra ◽  
Hugo A Guillen-Ramirez ◽  
...  

Abstract Motivation Bioactive peptides have gained great attention in the academy and pharmaceutical industry since they play an important role in human health. However, the increasing number of bioactive peptide databases is causing the problem of data redundancy and duplicated efforts. Even worse is the fact that the available data is non-standardized and often dirty with data entry errors. Therefore, there is a need for a unified view that enables a more comprehensive analysis of the information on this topic residing at different sites. Results After collecting web pages from a large variety of bioactive peptide databases, we organized the web content into an integrated graph database (starPepDB) that holds a total of 71 310 nodes and 348 505 relationships. In this graph structure, there are 45 120 nodes representing peptides, and the rest of the nodes are connected to peptides for describing metadata. Additionally, to facilitate a better understanding of the integrated data, a software tool (starPep toolbox) has been developed for supporting visual network analysis in a user-friendly way; providing several functionalities such as peptide retrieval and filtering, network construction and visualization, interactive exploration and exporting data options. Availability and implementation Both starPepDB and starPep toolbox are freely available at http://mobiosd-hub.com/starpep/. Supplementary information Supplementary data are available at Bioinformatics online.

2015 ◽  
Vol 32 (6) ◽  
pp. 955-957 ◽  
Author(s):  
Filippo Piccinini ◽  
Alexa Kiss ◽  
Peter Horvath

Abstract Motivation: Time-lapse experiments play a key role in studying the dynamic behavior of cells. Single-cell tracking is one of the fundamental tools for such analyses. The vast majority of the recently introduced cell tracking methods are limited to fluorescently labeled cells. An equally important limitation is that most software cannot be effectively used by biologists without reasonable expertise in image processing. Here we present CellTracker, a user-friendly open-source software tool for tracking cells imaged with various imaging modalities, including fluorescent, phase contrast and differential interference contrast (DIC) techniques. Availability and implementation: CellTracker is written in MATLAB (The MathWorks, Inc., USA). It works with Windows, Macintosh and UNIX-based systems. Source code and graphical user interface (GUI) are freely available at: http://celltracker.website/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (19) ◽  
pp. 4960-4962
Author(s):  
Lauren Marazzi ◽  
Andrew Gainer-Dewar ◽  
Paola Vera-Licona

Abstract Summary OCSANA+ is a Cytoscape app for identifying nodes to drive the system toward a desired long-term behavior, prioritizing combinations of interventions in large-scale complex networks, and estimating the effects of node perturbations in signaling networks, all based on the analysis of the network’s structure. OCSANA+ includes an update to optimal combinations of interventions from network analysis software tool with cutting-edge and rigorously tested algorithms, together with recently developed structure-based control algorithms for non-linear systems and an algorithm for estimating signal flow. All these algorithms are based on the network’s topology. OCSANA+ is implemented as a Cytoscape app to enable a user interface for running analyses and visualizing results. Availability and implementation OCSANA+ app and its tutorial can be downloaded from the Cytoscape App Store or https://veraliconaresearchgroup.github.io/OCSANA-Plus/. The source code and computations are available in https://github.com/VeraLiconaResearchGroup/OCSANA-Plus_SourceCode. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Ricardo M. Czekster ◽  
Henrique Jung De Carvalho ◽  
Gabriela Zucchetti Kessler ◽  
Liane Mahlmann Kipper ◽  
Thais Webber

Addressing consistent and reliable decision-making are crucial activities when choosing seemingly related alternatives for a set of criteria. Models and methods for aiding decisions such as analytic hierarchy process (AHP) were developed to handle quantified assessments of quality attributes, usually intangible and numerically hard to cope. We introduce the Decisor software tool to assist the use of AHP to drive complex decision modeling. We present a study of related tools describing advantages and drawbacks. The tool is user friendly, with intuitive data entry fields. Users may input alternatives and criteria, assigning weights from different judgment scales. Decisor’s main characteristic is its simple interface where the tool computes priority vectors for all alternatives and its consistency rates. It is also possible to operate with negative weighting, inferring Benefits, Opportunities, Costs, and Risks. The tool implements Group Decisions, using the geometric mean to combine criteria comparisons from selected stakeholders.


2020 ◽  
Vol 36 (9) ◽  
pp. 2881-2887
Author(s):  
Joy Roy ◽  
Eric Cheung ◽  
Junaid Bhatti ◽  
Abraar Muneem ◽  
Daniel Lobo

Abstract Motivation Morphological and genetic spatial data from functional experiments based on genetic, surgical and pharmacological perturbations are being produced at an extraordinary pace in developmental and regenerative biology. However, our ability to extract knowledge from these large datasets are hindered due to the lack of formalization methods and tools able to unambiguously describe, centralize and interpret them. Formalizing spatial phenotypes and gene expression patterns is especially challenging in organisms with highly variable morphologies such as planarian worms, which due to their extraordinary regenerative capability can experimentally result in phenotypes with almost any combination of body regions or parts. Results Here, we present a computational methodology and mathematical formalism to encode and curate the morphological outcomes and gene expression patterns in planaria. Worm morphologies are encoded with mathematical graphs based on anatomical ontology terms to automatically generate reference morphologies. Gene expression patterns are registered to these standard reference morphologies, which can then be annotated automatically with anatomical ontology terms by analyzing the spatial expression patterns and their textual descriptions. This methodology enables the curation and annotation of complex experimental morphologies together with their gene expression patterns in a centralized standardized dataset, paving the way for the extraction of knowledge and reverse-engineering of the much sought-after mechanistic models in planaria and other regenerative organisms. Availability and implementation We implemented this methodology in a user-friendly graphical software tool, PlanGexQ, freely available together with the data in the manuscript at https://lobolab.umbc.edu/plangexq. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 14 ◽  
Author(s):  
Shefali Singhal ◽  
Poonam Tanwar

Abstract:: Now-a-days when everything is going digitalized, internet and web plays a vital role in everyone’s life. When one has to ask something or has any online task to perform, one has to use internet to access relevant web-pages throughout. These web-pages are mainly designed for large screen terminals. But due to mobility, handy and economic reasons most of the persons are using small screen terminals (SST) like mobile phone, palmtop, pagers, tablet computers and many more. Reading a web page which is actually designed for large screen terminal on a small screen is time consuming and cumbersome task because there are many irrelevant content parts which are to be scrolled or there are advertisements, etc. Here main concern is e-business users. To overcome such issues the source code of a web page is organized in tree data-structure. In this paper we are arranging each and every main heading as a root node and all the content of this heading as a child node of the logical structure. Using this structure, we regenerate a web-page automatically according to SST size. Background:: DOM and VIPS algorithms are the main background techniques which are supporting the current research. Objective:: To restructure a web page in a more user friendly and content presenting format. Method Backtracking:: Method Backtracking: Results:: web page heading queue generation. Conclusion:: Concept of logical structure supports every SST.


2020 ◽  
Vol 36 (9) ◽  
pp. 2690-2696
Author(s):  
Jarkko Toivonen ◽  
Pratyush K Das ◽  
Jussi Taipale ◽  
Esko Ukkonen

Abstract Motivation Position-specific probability matrices (PPMs, also called position-specific weight matrices) have been the dominating model for transcription factor (TF)-binding motifs in DNA. There is, however, increasing recent evidence of better performance of higher order models such as Markov models of order one, also called adjacent dinucleotide matrices (ADMs). ADMs can model dependencies between adjacent nucleotides, unlike PPMs. A modeling technique and software tool that would estimate such models simultaneously both for monomers and their dimers have been missing. Results We present an ADM-based mixture model for monomeric and dimeric TF-binding motifs and an expectation maximization algorithm MODER2 for learning such models from training data and seeds. The model is a mixture that includes monomers and dimers, built from the monomers, with a description of the dimeric structure (spacing, orientation). The technique is modular, meaning that the co-operative effect of dimerization is made explicit by evaluating the difference between expected and observed models. The model is validated using HT-SELEX and generated datasets, and by comparing to some earlier PPM and ADM techniques. The ADM models explain data slightly better than PPM models for 314 tested TFs (or their DNA-binding domains) from four families (bHLH, bZIP, ETS and Homeodomain), the ADM mixture models by MODER2 being the best on average. Availability and implementation Software implementation is available from https://github.com/jttoivon/moder2. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Ferhat Alkan ◽  
Joana Silva ◽  
Eric Pintó Barberà ◽  
William J Faller

Abstract Motivation Ribosome Profiling (Ribo-seq) has revolutionized the study of RNA translation by providing information on ribosome positions across all translated RNAs with nucleotide-resolution. Yet several technical limitations restrict the sequencing depth of such experiments, the most common of which is the overabundance of rRNA fragments. Various strategies can be employed to tackle this issue, including the use of commercial rRNA depletion kits. However, as they are designed for more standardized RNAseq experiments, they may perform suboptimally in Ribo-seq. In order to overcome this, it is possible to use custom biotinylated oligos complementary to the most abundant rRNA fragments, however currently no computational framework exists to aid the design of optimal oligos. Results Here, we first show that a major confounding issue is that the rRNA fragments generated via Ribo-seq vary significantly with differing experimental conditions, suggesting that a “one-size-fits-all” approach may be inefficient. Therefore we developed Ribo-ODDR, an oligo design pipeline integrated with a user-friendly interface that assists in oligo selection for efficient experiment-specific rRNA depletion. Ribo-ODDR uses preliminary data to identify the most abundant rRNA fragments, and calculates the rRNA depletion efficiency of potential oligos. We experimentally show that Ribo-ODDR designed oligos outperform commercially available kits and lead to a significant increase in rRNA depletion in Ribo-seq. Availability Ribo-ODDR is freely accessible at https://github.com/fallerlab/Ribo-ODDR Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3913-3915
Author(s):  
Hemi Luan ◽  
Xingen Jiang ◽  
Fenfen Ji ◽  
Zhangzhang Lan ◽  
Zongwei Cai ◽  
...  

Abstract Motivation Liquid chromatography–mass spectrometry-based non-targeted metabolomics is routinely performed to qualitatively and quantitatively analyze a tremendous amount of metabolite signals in complex biological samples. However, false-positive peaks in the datasets are commonly detected as metabolite signals by using many popular software, resulting in non-reliable measurement. Results To reduce false-positive calling, we developed an interactive web tool, termed CPVA, for visualization and accurate annotation of the detected peaks in non-targeted metabolomics data. We used a chromatogram-centric strategy to unfold the characteristics of chromatographic peaks through visualization of peak morphology metrics, with additional functions to annotate adducts, isotopes and contaminants. CPVA is a free, user-friendly tool to help users to identify peak background noises and contaminants, resulting in decrease of false-positive or redundant peak calling, thereby improving the data quality of non-targeted metabolomics studies. Availability and implementation The CPVA is freely available at http://cpva.eastus.cloudapp.azure.com. Source code and installation instructions are available on GitHub: https://github.com/13479776/cpva. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 8 (1) ◽  
pp. 205395172110184
Author(s):  
Tommaso Venturini ◽  
Mathieu Jacomy ◽  
Pablo Jensen

It is increasingly common in natural and social sciences to rely on network visualizations to explore relational datasets and illustrate findings. Such practices have been around long enough to prove that scholars find it useful to project networks in a two-dimensional space and to use their visual qualities as proxies for their topological features. Yet these practices remain based on intuition, and the foundations and limits of this type of exploration are still implicit. To fill this lack of formalization, this paper offers explicit documentation for the kind of visual network analysis encouraged by force-directed layouts. Using the example of a network of Jazz performers, band and record labels extracted from Wikipedia, the paper provides guidelines on how to make networks readable and how to interpret their visual features. It discusses how the inherent ambiguity of network visualizations can be exploited for exploratory data analysis. Acknowledging that vagueness is a feature of many relational datasets in the humanities and social sciences, the paper contends that visual ambiguity, if properly interpreted, can be an asset for the analysis. Finally, we propose two attempts to distinguish the ambiguity inherited from the represented phenomenon from the distortions coming from fitting a multidimensional object in a two-dimensional space. We discuss why these attempts are only partially successful, and we propose further steps towards a metric of spatialization quality.


2018 ◽  
Vol 35 (15) ◽  
pp. 2686-2689
Author(s):  
Asa Thibodeau ◽  
Dong-Guk Shin

Abstract Summary Current approaches for pathway analyses focus on representing gene expression levels on graph representations of pathways and conducting pathway enrichment among differentially expressed genes. However, gene expression levels by themselves do not reflect the overall picture as non-coding factors play an important role to regulate gene expression. To incorporate these non-coding factors into pathway analyses and to systematically prioritize genes in a pathway we introduce a new software: Triangulation of Perturbation Origins and Identification of Non-Coding Targets. Triangulation of Perturbation Origins and Identification of Non-Coding Targets is a pathway analysis tool, implemented in Java that identifies the significance of a gene under a condition (e.g. a disease phenotype) by studying graph representations of pathways, analyzing upstream and downstream gene interactions and integrating non-coding regions that may be regulating gene expression levels. Availability and implementation The TriPOINT open source software is freely available at https://github.uconn.edu/ajt06004/TriPOINT under the GPL v3.0 license. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document