Phylogeographical spatial diffusion analysis reveals the journey of Geoffroy’s cat through the Quaternary glaciations of South America

2020 ◽  
Vol 129 (3) ◽  
pp. 603-617
Author(s):  
María Jimena Gómez Fernández ◽  
Alberto Fameli ◽  
Julio Rojo Gómez ◽  
Javier A Pereira ◽  
Patricia Mirol

Abstract Leopardus geoffroyi is a small feline with a widespread distribution in a broad array of habitats. Here we investigate its evolutionary history to characterize the phylogeographical patterns that led to its present distribution using mitochondrial DNA from 72 individuals collected throughout its entire range. All haplotypes conformed to a monophyletic group, including two clades with a central/marginal disposition that is incongruent to the proposed subspecies. Spatial diffusion analysis showed the origin of the species within the oldest and more diverse central clade. A Bayesian Skyline Plot combined with a dispersal through time plot revealed two population increases at 190 000–170 000 and 45 000–35 000 years ago, the latter period accompanied by an increase in the dispersal rate. Species distribution models showed similar patterns between the present and Last Interglacial Period, and a reduction of high-probability areas during the Last Glacial Maximum (LGM). Molecular evidence confirms L. geoffroyi as a monotypic species whose origin is located in Central Argentina. The last glaciation had little effect on the pattern of distribution of the species: the population and range expansion that started before the LGM, although probably being halted, continued after the glaciation and resulted in the presence of this felid in the far south of Patagonia.

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 858 ◽  
Author(s):  
Sun ◽  
Lin ◽  
Huang ◽  
Ye ◽  
Lai ◽  
...  

To understand the origin and evolutionary history, and the geographical and historical causes for the formation of the current distribution pattern of Lquidambar formosana Hance, we investigated the phylogeography by using chloroplasts DNA (cpDNA) non-coding sequences and species distribution models (SDM). Four cpDNA intergenic spacer regions were amplified and sequenced for 251 individuals from 25 populations covering most of its geographical range in China. A total of 20 haplotypes were recovered. The species had a high level of chloroplast genetic variation (Ht = 0.909 ± 0.0192) and a significant phylogeographical structure (genetic differentiation takes into account distances among haplotypes (Nst) = 0.730 > population differentiation that does not consider distances among haplotypes (Gst) = 0.645; p < 0.05), whereas the genetic variation within populations (Hs = 0.323 ± 0.0553) was low. The variation of haplotype mainly occurred among populations (genetic differentiation coefficient (Fst) = 0.73012). The low genetic diversity within populations may be attributed to the restricted gene flow (Nm = 0.18). The time of the most recent common ancestor for clade V mostly distributed in Southwestern China, Central China, Qinling and Dabieshan mountains was 10.30 Ma (95% Highest posterior density (HPD): 9.74–15.28) dating back to the middle Miocene, which revealed the genetic structure of L. formosana was of ancient origin. These results indicated that dramatic changes since the Miocene may have driven the ancestors of L. formosana to retreat from the high latitudes of the Northern Hemisphere to subtropical China in which the establishment and initial intensification of the Asian monsoon provided conditions for their ecological requirements. This scenario was confirmed by the fossil record. SDM results indicated there were no contraction–expansion dynamics, and there was a stable range since the last interglacial period (LIG, 130 kya). Compared with the population expansion detected by Fu’s Fs value and the mismatch distribution, we speculated the expansion time may happen before the interglacial period. Evidence supporting L. formosana was the ancient origin and table range since the last interglacial period.


1998 ◽  
Vol 17 (9-10) ◽  
pp. 963-985 ◽  
Author(s):  
Torben Fronval ◽  
Eystein Jansen ◽  
Haflidi Haflidason ◽  
Hans Petter Sejrup

2016 ◽  
Vol 12 (9) ◽  
pp. 1933-1948 ◽  
Author(s):  
Amaelle Landais ◽  
Valérie Masson-Delmotte ◽  
Emilie Capron ◽  
Petra M. Langebroek ◽  
Pepijn Bakker ◽  
...  

Abstract. The last interglacial period (LIG, ∼ 129–116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.


2010 ◽  
Vol 7 (3) ◽  
pp. 3969-3999 ◽  
Author(s):  
C. Albrecht ◽  
H. Vogel ◽  
T. Hauffe ◽  
T. Wilke

Abstract. Ancient Lake Ohrid is probably of early Pleistocene or Pliocene origin and amongst the few lakes in the world harboring an outstanding degree of endemic biodiversity. Although there is a long history of evolutionary research in Lake Ohrid, particularly on molluscs, a mollusc fossil record has been missing up to date. For the first time, gastropod and bivalve fossils are reported from the basal, calcareous part of a 2.6 m long sediment succession (core Co1200) from the north-eastern part of Lake Ohrid. Electron spin resonance (ESR) dating of mollusc shells from the same stratigraphic level yielded an age of 130±28 ka. Lithofacies III sediments, i.e. a subdivision of the stratigraphic unit comprising the basal succession of core Co1200 between 181.5–263 cm appeared solid, grayish-white, and consisted almost entirely of silt-sized endogenic calcite (CaCO3>70%) and intact and broken mollusc shells. Here we compare the faunal composition of the thanatocoenosis with recent mollusc associations in Lake Ohrid. A total of 13 mollusc species (9 gastropod and 4 bivalve species) could be identified within Lithofacies III sediments. The value of sediment core fossils for reconstructing palaeoenvironmental settings was evaluated. The agreement between sediment and palaeontological proxies was tested. The combined findings of the ecological study and the sediment characteristics suggest deposition in a shallow water environment during the Last Interglacial period. We tested for major faunal changes since the Last Interglacial period and searched for signs of extinction events. The fossil fauna exclusively included species also found in the present fauna, i.e. no extinction events are evident for this site since the Last Interglacial. The thanatocoenosis showed the highest similarity with recent Intermediate Layer (5–25 m) mollusc assemblages. The demonstrated existence of a mollusc fossil record in Lake Ohrid sediment cores also has great significance for future deep drilling projects. It can be hoped that a more far reaching mollusc fossil record will then be obtained, enabling insight into the early evolutionary history of Lake Ohrid.


Author(s):  
Hans Blumenberg

This chapter discusses Hans Blumenberg's essay “Advancing into Eternal Silence: A Century after the Sailing of the Fram” (1993). This essay was written three years before his death. It offers not just the philosophical reading of an episode in the history of polar expeditions ripe with significance, but draws on an anecdote to muse on the relationship between media-archaeology and nihilism. Blumenberg explains that humans are risky beings, and not just because they seek frontier-pushing adventures like the voyage adrift of the Fram. They are risky for the very reason that their biological origins lie in the narrow span of the last interglacial period, when they learned the ability to cope with life caught between the advancing and receding glaciers; the natural being was now pitted against nature.


Quaternary ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 6
Author(s):  
Christopher Satow ◽  
Katharine M. Grant ◽  
Sabine Wulf ◽  
Hartmut Schulz ◽  
Addison Mallon ◽  
...  

The Eemian was the last interglacial period (~130 to 115 ka BP) to precede the current interglacial. In Eastern Mediterranean marine sediments, it is marked by a well-developed and organic-rich “sapropel” layer (S5), which is thought to reflect an intensification and northward migration of the African monsoon rain belt over orbital timescales. However, despite the importance of these sediments, very little proxy-independent stratigraphic information is available to enable rigorous correlation of these sediments across the region. This paper presents the first detailed study of visible and non-visible (cryptotephra) layers found within these sediments at three marine coring sites: ODP Site 967B (Levantine Basin), KL51 (South East of Crete) and LC21 (Southern Aegean Sea). Major element analyses of the glass component were used to distinguish four distinct tephra events of Santorini (e.g., Vourvoulos eruption) and possible Anatolian provenance occurring during the formation of S5. Interpolation of core chronologies provides provisional eruption ages for the uppermost tephra (unknown Santorini, 121.8 ± 2.9 ka) and lowermost tephra (Anatolia or Kos/Yali/Nisyros, 126.4 ± 2.9 ka). These newly characterised tephra deposits have also been set into the regional tephrostratigraphy to illustrate the potential to precisely synchronise marine proxy records with their terrestrial counterparts, and also contribute to the establishment of a more detailed volcanic history of the Eastern Mediterranean.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Paul S. Wilcox ◽  
Charlotte Honiat ◽  
Martin Trüssel ◽  
R. Lawrence Edwards ◽  
Christoph Spötl

AbstractWarmer temperatures than today, over a period spanning millennia, most recently occurred in the Last Interglacial period, about 129,000 to 116,000 years ago. Yet, the timing and magnitude of warmth during this time interval are uncertain. Here we present a reconstruction of temperatures in the Swiss Alps over the full duration of the Last Interglacial period based on hydrogen isotopes from fluid inclusions in precisely dated speleothems. We find that temperatures were up to 4.0 °C warmer during the Last Interglacial period than in our present-day reference period 1971 to 1990. Climate instability, including an abrupt cooling event about 125,500 years ago, interrupted this thermal optimum but temperatures remained up to 2.0 °C warmer than the present day. We suggest that higher-elevation areas may be more susceptible to warming relative to lowland areas, and that this may hold also for a future climate forced by increasing levels of greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document