scholarly journals Genome-wide analysis of alternative splicing differences between oocyte and zygote†

2020 ◽  
Vol 102 (5) ◽  
pp. 999-1010
Author(s):  
Rui Cheng ◽  
Xiaoman Zheng ◽  
Yingmei Wang ◽  
Mengyun Wang ◽  
Chuan Zhou ◽  
...  

Abstract Alternative splicing (AS) of mRNA precursors allows the synthesis of multiple mRNAs from a single primary transcript, significantly expanding the information content and regulatory possibilities of higher eukaryotic genomes. During mammalian development, AS drives certain decisive changes in different physiological processes. As development progresses, the maternal-to-zygotic transition (MZT) will trigger two processes: elimination of a subset of maternal mRNA and transcription of the zygote genome begins. Recent high-throughput technological advancements have facilitated genome-wide AS, whereas its analysis in mouse oocyte transition to the zygote stage has not been reported. We present a high-resolution global analysis of AS transitions and discovered extensive AS transitions between mouse oocyte and zygote. The difference of AS patterns was further confirmed using reverse transcription-polymerase chain reaction analysis. Many genes with specific AS events in mouse oocytes are differentially expressed between oocyte and zygote, but only a few genes with specific AS events in zygote are differentially expressed between oocyte and zygote. We provide a landscape of AS events in mouse oocyte and zygote. Our results advance the understanding of AS transitions during mouse fertilization and its potential functions for MZT and further development.

2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 327-327
Author(s):  
Jing Chen ◽  
Collin Melton ◽  
NaYoung Suh ◽  
Robert Blelloch ◽  
Marco Conti

2021 ◽  
Author(s):  
Mingtian Deng ◽  
Baobao Chen ◽  
Zifei Liu ◽  
Yongjie Wan ◽  
Dongxu Li ◽  
...  

Abstract Background: In mammals, maternal gene products decay and zygotic genome activation (ZGA) during maternal to zygotic transition (MZT) is critical for pre-implantation. Y-box binding protein YBX1 plays vital roles in RNA stabilization and transcriptional regulation, but its roles in pre-implantation development remain to be elucidated. The objective of this study is to investigate the role and the molecular mechanisms of YBX1 during MZT.Methods: RNA-seq datasets in mice, human, bovine, and goat embryos were re-analyzed. YBX1 was knocked down by siRNA microinjection. The 8-cell stage embryos were collected for RNA-seq. The differentially expressed genes and alternative splicing (AS) events were identified using DESeq2 and rMATs, respectively. GO/KEGG/GSEA enrichment analysis was performed using clusterProfiler and enrichplot. Furthermore, 5-EU staining was performed to confirm the effect of YBX1 knockdown on transcriptional activity.Results: The expression of YBX1 was increased during MZT in goat, bovine, human, and mice. By microinjection of siRNA against YBX1, we successfully knocked down YBX1, and the embryo development was impaired in YBX1 knockdown embryos. Using RNA-seq, we identified 1623 up-regulated and 3531 down-regulated genes in the 8-cell stage YBX1 knockdown embryos. Of note, the down-regulated genes were enriched in regulation of RNA/mRNA stability and spliceosome, suggesting that YBX1 might medicate RNA stability and AS. To this end, we identified 3284 differential AS events and 1322 differentially expressed maternal mRNAs at the 8-cell stage YBX1 knockdown embryos. Meanwhile, the splicing factors and mRNA decay related showed aberrant expression. Moreover, the transcriptional activity during ZGA in goat and mice was compromised when YBX1 was knocked down.Conclusion: Our results identify that YBX1 serves an important role in maternal mRNA decay, alternative splicing, and the transcriptional activity required for early embryogenesis, which will broaden the current understanding of YBX1 functions during the stochastic reprogramming events.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 361-361 ◽  
Author(s):  
Anil Aktas Samur ◽  
Mehmet Kemal Samur ◽  
Michael A Lopez ◽  
Sanika Derebail ◽  
Kenneth C. Anderson ◽  
...  

Alternative splicing (AS) is a critical post-transcriptional event, which affects the number of cellular processes. Aberrant splicing of some genes has been reported in multiple myeloma (MM). However, to date, whole-transcriptome-wide AS study has not been performed. We used deep RNA-sequencing data from 16 normal plasma cells (NPC) and 360 newly-diagnosed MM patients to describe the landscape of the alternative splicing events and the molecular mechanisms driving aberrant AS in MM. Global splicing analysis showed that mutually exclusive exon (MXE) (n=510) and Skipped Exon (SE) (n=417) are the most frequent splicing events in MM compared to NPC. Among these events, ~54% were observed in genes which are not differentially expressed between MM and NPC and 46% of the AS events (SE, MXE, retained intron, alternative 3'/5' sites) were observed in differentially expressed genes targeting 203 unique genes. AS affected RNA transcription regulation genes such as IKZF1, IKZF3, and key regulatory elements in MM including, IRF3, IRF4, or key transcription factors such as MEF2C, XPB1, STAT2, and ILF3. In general, AS targetted DNA replication, cell cycle, and apoptosis pathways. MM subgroups showed a heterogeneity for AS events. Monosomy 14, t(4;14), del1p and del17p had the highest number of unique (not observed in other subgroups) AS events compared to NPC.To understanding the molecular mechanisms driving aberrant alternate splicing we next investigated115 splicing factors (SF) in MM and associated them with AS events. We observed that ~40% of SF were dysregulated (dysregulated expression and/or copy number alteration) in MM compared to NPC, including SRSF, PCBP and RBM families. To understand the key binding regions, we have performed SF binding motif enrichment analysis around AS events and found that SRFS1, SRSF9, and PCB1 motifs to be enriched among the splicing events. Importantly, SRSF1 expression was linked with survival in two independent MM datasets.We therefore explored functional role of SRSF1 in MM with perturbation studies. While upregulation of SRSF1 expression significantly increased the cell growth and survival, conversely downregulation of SRSF1 inhibited the both. To dissect the mechanisms of SRSF1-mediated MM growth induction, we utilized SRSF1 mutants lacking either of the 2 RNA-recognition motifs or the serine/argine-rich C-terminal domain involved in protein-protein interactions, and recruitment of spliceosome components. We also utilized a C-terminal fusion of SRSF1 with the nuclear-retention signal of SRSF2 (NRS1 mutant), to force SRSF1 retention in the nucleus and assess the role of its nuclear versus cytoplasmic functions. These studies suggested that SRSF1-regulated AS effects MM cell proliferation. We surprisingly also found that even NRS1 mutant failed to promote MM growth, suggesting an important role of cytoplasmic SRSF1 in promoting MM cells proliferation.We next investigated alternative splicing pattern changes induced by SRSF1 knock down.When analyzing cellular functions of SRSF1-regulated splicing events, we found that SRSF1 knock down affect's genes in the RNA processing pathway as well as genes involved in cancer-related functions such as mTOR, E2F and MYC-related pathways. Splicing analysis was corroborated with immunoprecipitation (IP) followed by mass spectrometry (MS) analysis of T7-tagged SRSF1 MM cells.Finally, using genome wide chromatin and transcription landscape mapping techniques, we have found SRSF1 to be under the transcriptional control of oncogenic E2F1 in MM cells. Consistent with these findings, we observed greater in vitro loss of viability in a large panel of MM cell lines compared with PBMCs from healthy volunteers, following exposure to the splicing modulator pladeniolide. In summary, this study for the first time reports a detailed splicing landscape in myeloma and highlights the biological and clinical importance of alternative splicing events. Moreover, these results indicate a functional role and clinical significance of a gene involved in regulation of alternate splicing in MM, highlighting the need to further understand the splicing pattern in myeloma initiation and progression. Disclosures Anderson: Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Oncopep: Other: Scientific Founder; Sanofi-Aventis: Other: Advisory Board; Bristol-Myers Squibb: Other: Scientific Founder. Avet-Loiseau:takeda: Consultancy, Other: travel fees, lecture fees, Research Funding; celgene: Consultancy, Other: travel fees, lecture fees, Research Funding. Munshi:Adaptive: Consultancy; Abbvie: Consultancy; Takeda: Consultancy; Janssen: Consultancy; Oncopep: Consultancy; Amgen: Consultancy; Celgene: Consultancy.


2014 ◽  
Author(s):  
Akihiko Sakashita ◽  
Yosuke Iseki ◽  
Mei Nakajima ◽  
Takuya Wakai ◽  
Hisato Kobayashi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samina Shabbir ◽  
Prerona Boruah ◽  
Lingli Xie ◽  
Muhammad Fakhar-e-Alam Kulyar ◽  
Mohsin Nawaz ◽  
...  

AbstractOvary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 232
Author(s):  
Weiran Zheng ◽  
Haichao Hu ◽  
Qisen Lu ◽  
Peng Jin ◽  
Linna Cai ◽  
...  

Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.


Sign in / Sign up

Export Citation Format

Share Document