scholarly journals Analysis of heart and neural crest derivatives-expressed protein 2 (HAND2)-progesterone interactions in peri-implantation endometrium†

2020 ◽  
Vol 102 (5) ◽  
pp. 1111-1121 ◽  
Author(s):  
Sandra Šućurović ◽  
Tamara Nikolić ◽  
Jan J Brosens ◽  
Biserka Mulac-Jeričević

Abstract Implantation is restricted to a narrow window when the local endometrial microenvironment is supportive of the invading embryo. The ovarian steroid hormones estrogen (E) and progesterone (P) are principal regulators of uterine receptivity. Suppression of E-dependent proliferation of luminal epithelium (LE) by P is mandatory for embryo implantation. Here, we report that the balance of E receptor α (ERα) and P receptors (PR) activity controls HAND2 expression, a key transcription factor that determines the fate of the implanting embryo and thereby pregnancy outcome. As a model, we used wild-type mice as well as mice in which either both PR isoforms or the A-isoform was genetically ablated (PRKO and PRAKO, respectively). Detailed spatiotemporal analyses of PR, HAND2, and ERα expression at implantation site demonstrated co-expression of HAND2 and PR but not ERα. Furthermore, in hormonally treated ovariectomized WT, PRAKO and PRKO mice, E suppresses endometrial HAND2 expression. Adding P together with E partially rescues HAND2 expression in WT, but not PRAKO and PRKO animals. Therefore, infertility in PRAKO mice is at least in part associated with the loss of PR-A-regulated HAND2 expression.

Development ◽  
1999 ◽  
Vol 126 (17) ◽  
pp. 3757-3767 ◽  
Author(s):  
J.A. Lister ◽  
C.P. Robertson ◽  
T. Lepage ◽  
S.L. Johnson ◽  
D.W. Raible

We report the isolation and identification of a new mutation affecting pigment cell fate in the zebrafish neural crest. Homozygous nacre (nac(w2)) mutants lack melanophores throughout development but have increased numbers of iridophores. The non-crest-derived retinal pigment epithelium is normal, suggesting that the mutation does not affect pigment synthesis per se. Expression of early melanoblast markers is absent in nacre mutants and transplant experiments suggested a cell-autonomous function in melanophores. We show that nac(w2) is a mutation in a zebrafish gene encoding a basic helix-loop-helix/leucine zipper transcription factor related to microphthalmia (Mitf), a gene known to be required for development of eye and crest pigment cells in the mouse. Transient expression of the wild-type nacre gene restored melanophore development in nacre(−/−) embryos. Furthermore, misexpression of nacre induced the formation of ectopic melanized cells and caused defects in eye development in wild-type and mutant embryos. These results demonstrate that melanophore development in fish and mammals shares a dependence on the nacre/Mitf transcription factor, but that proper development of the retinal pigment epithelium in the fish is not nacre-dependent, suggesting an evolutionary divergence in the function of this gene.


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3871-3876 ◽  
Author(s):  
Liz Simon ◽  
Kerry A. Spiewak ◽  
Gail C. Ekman ◽  
Jaeyeon Kim ◽  
John P. Lydon ◽  
...  

Uterine receptivity to embryo implantation depends on appropriate progesterone (P4) and estrogen stimulation. P4 rapidly stimulates production of the morphogen Indian hedgehog (IHH) in murine uterine epithelium as well as downstream molecules in the hedgehog pathway such as Patched homolog 1 (PTCH1) and nuclear receptor subfamily 2, group F, member 2 (NR2F2) in uterine stroma. Studies using IHH-null mice indicate that IHH is obligatory for the normal P4 response in the uterus. To determine whether IHH induction in uterine epithelium is mediated through P4 receptor (PR) in epithelium (E) and/or stroma (S), we produced tissue recombinants using uteri from neonatal PR knockout (ko) mice and wild-type (wt) mice containing PR in S and/or E or lacking PR altogether using a tissue recombinant methodology and assessed their response to P4. In tissue recombinants containing wt-S (wt-S + wt-E and wt-S + ko-E), P4 induced Ihh mRNA expression at 6 h that was 6-fold greater than in oil-treated controls (P < 0.05; n = 6) in both types of tissue recombinants despite the absence of epithelial PR in wt-S + ko-E grafts. Conversely, Ihh mRNA expression was unaffected by P4 in ko-S + ko-E and ko-S + wt-E grafts despite epithelial PR expression in the latter. Nr2f2 and Ptch1 mRNA expression was similar in that it was stimulated by P4 only in recombinants containing stromal PR. These results indicate that stromal PR is both necessary and sufficient for P4 stimulation of epithelial IHH as well as downstream events such as PTCH1 and NR2F2 increases in stroma.


Reproduction ◽  
2012 ◽  
Vol 144 (6) ◽  
pp. 661-668 ◽  
Author(s):  
I Granot ◽  
Y Gnainsky ◽  
N Dekel

Implantation failure, which is presently the major barrier in human fertility, is attributed, in many cases, to the failure of the uterus to acquire receptivity. The transition into a receptive uterus includes cellular changes in the endometrium and the modulated expression of different cytokines, growth factors, transcription factors, and prostaglandins. These molecules partake in the generation of an inflammatory response followed by the recruitment of immune cells. These cells have shown to be involved in the maternal immune tolerance toward the implanted embryo as well as in the maternal–fetus interaction during pregnancy. Most of the accumulated evidence indicates that embryo implantation is associated with an active Th1 inflammatory response while a Th2-humoral inflammation is required for pregnancy maintenance. Yet, recent findings suggest that a Th1 inflammatory response is also necessary for the acquisition of uterine receptivity. This notion was originally suggested by reports from our and other clinical centers worldwide that IVF patients with repeated implantation failure subjected to endometrial biopsy exhibit a substantial improvement in their chances to conceive. These findings, followed by the demonstration of an elevated pro-inflammatory cytokine/chemokine expression, as well as an increased abundance of immune cells, in the endometrium of these patients, raised the idea that acquisition of uterine receptivity is closely associated with an inflammatory response. This review summarizes the molecular and biochemical evidence that confirm this notion and proposes a mechanism by which injury-induced inflammation improves uterine receptivity and the subsequent pregnancy outcome.


2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Kanmuna Ray Talukdar ◽  
Purbajyoti Saikia ◽  
Hirendra N. Sarma

Abstract Background Embryo implantation is a tightly regulated sequence of events regulated by ovarian steroids, estrogen and progesterone, and their downstream targets. Ovarian steroids regulate most of the genes involved in embryo implantation and pregnancy. However, some factors are not regulated by ovarian steroids, estrogen, progesterone, or both. Kruppel-like factor 5 (Klf5) is an example of an ovarian steroid–independent factor having a role in cellular proliferation, differentiation. The detailed expression profile of Klf5 during uterine receptivity and periimplantation has not been studied till now. In the present research work, an attempt was made to investigate the expression pattern of Klf5 in mice fetal-maternal tissue during periimplantation (day 4–day 8). The expressional and functional independence of Klf5 on the ovarian steroids was studied using estrogen and progesterone antagonist. The study was carried out in female Swiss albino mice of LACA strain during the periimplantation period. KLF5 was localized in the fetal-maternal tissues using the immunofluorescence technique in paraffin-embedded tissues. Ovarian steroid antagonists were administered subcutaneously from day 1 to day 3 of gestation, and the uterus was collected on the morning of day 4. Klf5 protein and mRNA levels were studied by western blot and quantitative real-time PCR (qPCR), respectively. Results KLF5 was localized in the embryo, uterine luminal epithelium, glandular epithelium, and proliferating stromal cells during periimplantation. In ovarian steroid antagonist–treated groups, KLF5 was localized in the luminal and glandular epithelium and stroma. Western blot and qPCR confirmed translation and transcription of KLF5 during the experimental period. The KLF5 protein level significantly increased on day 6, day 7, and day 8 when compared with day 4 (P < 0.05). The mRNA level of Klf5 increased significantly on day 7 and day 8 when compared with day 4 (P < 0.05). In ovarian steroid antagonist–treated groups, protein and mRNA corresponding to Klf5 were observed. From this finding, it can be assumed that Klf5 may be a steroid-independent factor expressed during uterine receptivity. Conclusion Spatiotemporal KLF5 expression in fetal-maternal tissue was observed during the experimental period. The results suggest that Klf5 is an ovarian steroid–independent factor that may play a pivotal role in implantation, decidualization, and embryogenesis.


Reproduction ◽  
2004 ◽  
Vol 128 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Chun-Bo Teng ◽  
Hong-Lu Diao ◽  
Hong Ma ◽  
Jing Cong ◽  
Hao Yu ◽  
...  

Signal transducer and activator of transcription 3 (Stat3), a member of the Stat family, is specifically activated during mouse embryo implantation. The aim of this study was to investigate the expression, activation and regulation of Stat3 in rat uterus during early pregnancy, pseudopregnancy, delayed implantation and artificial decidualization. Stat3 mRNA was highly expressed in the luminal epithelium on day 5 and in the luminal epithelium and underlying stromal cells at implantation sites on day 6 of pregnancy. There was a strong level of Stat3 protein expression and phosphorylation in the stromal cells near the lumen and in the luminal epithelium on day 5 of pregnancy, which was similar to day 5 of pseudopregnancy. In the afternoon of day 6, the strong level of Stat3 phosphorylation was detected only in the luminal epithelium. Stat3 was highly expressed and activated in the decidual cells from days 7 to 9 of pregnancy and under artificial decidualization in the present study. Our results suggest that the strong level of Stat3 activation in the luminal epithelium and underlying stromal cells during the pre-implantation period may be important for establishing uterine receptivity as in mice, and the high level of Stat3 expression and activation in decidual cells may play a role during decidualization.


2018 ◽  
Vol 26 (6) ◽  
pp. 774-784 ◽  
Author(s):  
Michael R Strug ◽  
Ren-Wei Su ◽  
Tae Hoon Kim ◽  
Jae-Wook Jeong ◽  
Asgerally Fazleabas

During decidualization, endometrial stromal cells differentiate into a secretory phenotype to modulate the uterine microenvironment and promote embryo implantation. This highly metabolic process relies on ovarian steroid receptors and glucose transporters. Canonical Notch signaling is mediated by the transcription factor Recombination Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). Loss of RBPJ in the mouse uterus ( Pgrcre/+Rbpjflox/flox; Rbpj c-KO) results in subfertility in part due to an abnormal uterine–embryonic axis during implantation and, as described herein, decidualization failure. Induced in vivo decidualization in Rbpj c-KO mice was impaired with the downregulation of decidual markers and decreased progesterone receptor (Pgr) signaling. Consistent with in vivo mouse data, RBPJ knockdown during in vitro Human uterine fibroblast (HuF) cell decidualization results in the reduced expression of decidual marker genes along with PGR. Expression of the glucose transporter, SLC2A1, was decreased in the RBPJ-silenced HuF cells, which corresponded to decreased Slc2a1 in the secondary decidual zone of Rbpj c-KO mouse uteri. Exogenous administration of pyruvate, which bypasses the need for glucose, rescues PRL expression in RBPJ-deficient HuF cells. In summary, Notch signaling through RBPJ controls both ovarian steroid receptor PGR and glucose transporter SLC2A1 expression during decidualization, and this dysregulation likely contributes to embryo implantation failure.


Pneumologie ◽  
2012 ◽  
Vol 66 (11) ◽  
Author(s):  
K Hoehne ◽  
H Eibel ◽  
M Grimm ◽  
M Idzko ◽  
J Müller-Quernheim ◽  
...  

Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to &lt;1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


Sign in / Sign up

Export Citation Format

Share Document