Establishment of novel monoclonal antibodies for identification of type A spermatogonia in teleosts†

2019 ◽  
Vol 101 (2) ◽  
pp. 478-491 ◽  
Author(s):  
Makoto Hayashi ◽  
Kensuke Ichida ◽  
Sakiko Sadaie ◽  
Misako Miwa ◽  
Ryo Fujihara ◽  
...  

AbstractWe recently established a germ cell transplantation system in salmonids. Donor germ cells transplanted into the body cavity of recipient embryos migrate toward and are incorporated into the recipient gonad, where they undergo gametogenesis. Among the various types of testicular germ cells, only type A spermatogonia (A-SG) can be incorporated into the recipient gonads. Enriching for A-SG is therefore important for improving the efficiency of germ cell transplantation. To enrich for A-SG, an antibody against a cell surface marker is a convenient and powerful approach used in mammals; however, little is known about cell surface markers for A-SG in fish. To that end, we have produced novel monoclonal antibodies (mAbs) against cell-surface molecules of rainbow trout (Oncorhynchus mykiss) A-SG. We inoculated mice with living A-SG isolated from pvasa-GFP transgenic rainbow trout using GFP-dependent flow cytometry. By fusing lymph node cells of the inoculated mice with myeloma cells, we generated 576 hybridomas. To identify hybridomas that produce mAbs capable of labeling A-SG preferentially and effectively, we screened them using cell ELISA, fluorescence microscopy, and flow cytometry. We thereby identified two mAbs that can label A-SG. By using flow cytometry with these two antibodies, we could enrich for A-SG with transplantability to recipient gonads from amongst total testicular cells. Furthermore, one of these mAbs could also label zebrafish (Danio rerio) spermatogonia. Thus, we expect these monoclonal antibodies to be powerful tools for germ cell biology and biotechnology.

Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 117-126 ◽  
Author(s):  
H. Nakayama ◽  
H. Kuroda ◽  
H. Onoue ◽  
J. Fujita ◽  
Y. Nishimune ◽  
...  

Mutant mice of Sl/Sld genotype are deficient in melanocytes, erythrocytes, mast cells and germ cells. Deficiency of melanocytes, erythrocytes and mast cells is not attributable to an intrinsic defect in their precursor cells but to a defect in the tissue environment that is necessary for migration, proliferation and/or differentiation. We investigated the mechanism of germ cell deficiency in male Sl/Sld mice by producing aggregation chimaeras from Sl/Sld and +/+ embryos. Chimaeric mice with apparent white stripes were obtained. Two of four such chimaeras were fertile and the phenotypes of resulting progenies showed that some Sl/Sld germ cells had differentiated into functioning sperms in the testis of the chimaeras. In cross sections of the testes of chimaeras, both differentiated and nondifferentiated tubules were observed. However, the proportions of type A spermatogonia to Sertoli cells in both types of tubules were comparable to the values observed in differentiated tubules of normal +/+ mice. We reconstructed the whole length of four tubules from serial sections. Differentiated and nondifferentiated segments alternated in a single tubule. The shortest differentiated segment contained about 180 Sertoli cells and the shortest nondifferentiated segment about 150 Sertoli cells. These results suggest that Sertoli cells of either Sl/Sld or +/+ genotype make discrete patches and that differentiation of type A spermatogonia does not occur in patches of Sl/Sld Sertoli cells.


2001 ◽  
Vol 13 (8) ◽  
pp. 609 ◽  
Author(s):  
Fang-Xu Jiang

Male germ cell transplantation is a novel technique in which donor male stem germ cells are surgically transferred to the seminiferous tubules of a recipient testis by direct injection or via the rete testis or efferent duct. All germ cells that are destined to become stem spermatogonia are defined as male stem germ cells, including primordial germ cells from the gonadal ridges, and gonocytes and stem spermatogonia from the testis, all of which are transplantable and capable of undergoing normal spermatogenesis. Xenotransplantation of male germ cells from one species into the testis of another species, including human testicular cells in the mouse, has so far proved to be unsuccessful. However, the immunodeficient mouse testis can support rat spermatogenesis and produce apparently normal rat spermatozoa. The underlying mechanisms remain elusive. The present mini-review will focus on the importance of stem spermatogonial transplantation for testicular stem cell biology and discuss the likelihood of immune rejection after transplantation, which may limit the success of all male germ cell transplantation.


2016 ◽  
Vol 28 (12) ◽  
pp. 2051 ◽  
Author(s):  
Ido Bar ◽  
Andre Smith ◽  
Erin Bubner ◽  
Goro Yoshizaki ◽  
Yutaka Takeuchi ◽  
...  

Germ cell transplantation is an innovative technology for the production of interspecies surrogates, capable of facilitating easier and more economical management of large-bodied broodstock, such as the bluefin tuna. The present study explored the suitability of yellowtail kingfish (Seriola lalandi) as a surrogate host for transplanted southern bluefin tuna (Thunnus maccoyii) spermatogonial cells to produce tuna donor-derived gametes upon sexual maturity. Germ cell populations in testes of donor T. maccoyii males were described using basic histology and the molecular markers vasa and dead-end genes. The peripheral area of the testis was found to contain the highest proportions of dead-end-expressing transplantable Type A spermatogonia. T. maccoyii Type A spermatogonia-enriched preparations were transplanted into the coelomic cavity of 6–10-day-old post-hatch S. lalandi larvae. Fluorescence microscopy and polymerase chain reaction analysis detected the presence of tuna cells in the gonads of the transplanted kingfish fingerlings at 18, 28, 39 and 75 days after transplantation, indicating that the transplanted cells migrated to the genital ridge and had colonised the developing gonad. T. maccoyii germ cell-derived DNA or RNA was not detected at later stages, suggesting that the donor cells were not maintained in the hosts’ gonads.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Honaramooz ◽  
Yanfei Yang

Transplantation of isolated germ cells from a fertile donor male into the seminiferous tubules of infertile recipients can result in donor-derived sperm production. Therefore, this system represents a major development in the study of spermatogenesis and a unique functional assay to determine the developmental potential and relative abundance of spermatogonial stem cells in a given population of testis cells. The application of this method in farm animals has been the subject of an increasing number of studies, mostly because of its potential as an alternative strategy in producing transgenic livestock with higher efficiency and less time and capital requirement than the current methods. This paper highlights the salient recent research on germ cell transplantation in farm animals. The emphasis is placed on the current status of the technique and examination of ways to increase its efficiency through improved preparation of the recipient animals as well as isolation, purification, preservation, and transgenesis of the donor germ cells.


Reproduction ◽  
2005 ◽  
Vol 130 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Zuping He ◽  
Lixin Feng ◽  
Xiaodong Zhang ◽  
Yixun Geng ◽  
Daniela A Parodi ◽  
...  

The objective of this study was to compare the expression of Col1a1, Col1a2, and procollagen I in the seminiferous tubules of immature and adult mice and to characterize the cellular expression pattern of procollagen I in germ cells during spermatogenesis in order to provide necessary groundwork for further functional studies in the process of spermatogenesis. Microarray analysis demonstrated that Col1a1 and Col1a2 were abundantly expressed in the seminiferous tubules of 6-day-old mice compared with 60-day-old mice, and the expression levels of Col1a1 and Col1a2 mRNA were validated using a semi-quantitative RT-PCR assay. Western blot analysis further confirmed that procollagen I was expressed at a higher level in the seminiferous tubules of 6-day-old mice compared with 60-day-old mice. Immunohistochemical analysis revealed that type A spermatogonia were positive for procollagen I in the testis of 6-day-old mice, whereas Sertoli cells were negative for this protein. Thein vivoprocollagen I staining in type A spermatogonia was corroborated in spermatogonia exhibiting a high potential for proliferation and the ability to form germ cell colonies inin vitroculture. Moreover, procollagen I was also detected in type A spermatogonia, intermediate spermatogonia, type B spermatogonia, and preleptotene spermatocytes in the adult mouse testes, but positive staining disappeared in more differentiated germ cell lineages detaching from the basement membrane, including leptotene spermatocytes, pachytene spermatocytes, round spermatids and elongated spermatids. These data suggest that Col1a1, Col1a2 and procollagen I are associated with type A spermatogonia and play a potential role in mediating the detachment and migration of germ cells during spermatogenesis.


Biologia ◽  
2016 ◽  
Vol 71 (8) ◽  
Author(s):  
Amin Golpour ◽  
Mohammad Abdul Momin Siddique ◽  
Diógenes Henrique Siqueira-Silva ◽  
Martin Pšenička

AbstractInterest in reproductively sterile fish in aquaculture has prompted research into their production. Several methods are available for inducing sterility and optimizing its application in the global fishery industry. Sterilization can potentially be accomplished through irradiation, surgery, or chemical and hormonal treatment. Alternative approaches include triploidization, hybridization, and generation of new lines via advanced biotechnological techniques. Triploids of many commercially important species have been studied extensively and have been produced on a large scale for many years. Novel approaches, including disruption of gonadotropin releasing hormone signalling and genetic ablation of germ cells, have been developed that are effective in producing infertile fish but have the disadvantage of not being 100% reliable or are impractical for large-scale aquaculture. We review currently used technologies and recent advances in induction of sterility in fish, especially those intended for use in germ cell transplantation. Knowledge of the implications of these approaches remains incomplete, imposing considerable limitations.


Sign in / Sign up

Export Citation Format

Share Document