scholarly journals Expression of Col1a1, Col1a2 and procollagen I in germ cells of immature and adult mouse testis

Reproduction ◽  
2005 ◽  
Vol 130 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Zuping He ◽  
Lixin Feng ◽  
Xiaodong Zhang ◽  
Yixun Geng ◽  
Daniela A Parodi ◽  
...  

The objective of this study was to compare the expression of Col1a1, Col1a2, and procollagen I in the seminiferous tubules of immature and adult mice and to characterize the cellular expression pattern of procollagen I in germ cells during spermatogenesis in order to provide necessary groundwork for further functional studies in the process of spermatogenesis. Microarray analysis demonstrated that Col1a1 and Col1a2 were abundantly expressed in the seminiferous tubules of 6-day-old mice compared with 60-day-old mice, and the expression levels of Col1a1 and Col1a2 mRNA were validated using a semi-quantitative RT-PCR assay. Western blot analysis further confirmed that procollagen I was expressed at a higher level in the seminiferous tubules of 6-day-old mice compared with 60-day-old mice. Immunohistochemical analysis revealed that type A spermatogonia were positive for procollagen I in the testis of 6-day-old mice, whereas Sertoli cells were negative for this protein. Thein vivoprocollagen I staining in type A spermatogonia was corroborated in spermatogonia exhibiting a high potential for proliferation and the ability to form germ cell colonies inin vitroculture. Moreover, procollagen I was also detected in type A spermatogonia, intermediate spermatogonia, type B spermatogonia, and preleptotene spermatocytes in the adult mouse testes, but positive staining disappeared in more differentiated germ cell lineages detaching from the basement membrane, including leptotene spermatocytes, pachytene spermatocytes, round spermatids and elongated spermatids. These data suggest that Col1a1, Col1a2 and procollagen I are associated with type A spermatogonia and play a potential role in mediating the detachment and migration of germ cells during spermatogenesis.

Reproduction ◽  
2008 ◽  
Vol 136 (5) ◽  
pp. 543-557 ◽  
Author(s):  
Pedro M Aponte ◽  
Takeshi Soda ◽  
Katja J Teerds ◽  
S Canan Mizrak ◽  
Henk J G van de Kant ◽  
...  

The access to sufficient numbers of spermatogonial stem cells (SSCs) is a prerequisite for the study of their regulation and further biomanipulation. A specialized medium and several growth factors were tested to study thein vitrobehavior of bovine type A spermatogonia, a cell population that includes the SSCs and can be specifically stained for the lectin Dolichos biflorus agglutinin. During short-term culture (2 weeks), colonies appeared, the morphology of which varied with the specific growth factor(s) added. Whenever the stem cell medium was used, round structures reminiscent of sectioned seminiferous tubules appeared in the core of the colonies. Remarkably, these round structures always contained type A spermatogonia. When leukemia inhibitory factor (LIF), epidermal growth factor (EGF), or fibroblast growth factor 2 (FGF2) were added, specific effects on the numbers and arrangement of somatic cells were observed. However, the number of type A spermatogonia was significantly higher in cultures to which glial cell line-derived neurotrophic factor (GDNF) was added and highest when GDNF, LIF, EGF, and FGF2 were all present. The latter suggests that a proper stimulation of the somatic cells is necessary for optimal stimulation of the germ cells in culture. Somatic cells present in the colonies included Sertoli cells, peritubular myoid cells, and a few Leydig cells. A transplantation experiment, using nude mice, showed the presence of SSCs among the cultured cells and in addition strongly suggested a more than 10 000-fold increase in the number of SSCs after 30 days of culture. These results demonstrate that bovine SSC self-renew in our specialized bovine culture system and that this system can be used for the propagation of these cells.


Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 117-126 ◽  
Author(s):  
H. Nakayama ◽  
H. Kuroda ◽  
H. Onoue ◽  
J. Fujita ◽  
Y. Nishimune ◽  
...  

Mutant mice of Sl/Sld genotype are deficient in melanocytes, erythrocytes, mast cells and germ cells. Deficiency of melanocytes, erythrocytes and mast cells is not attributable to an intrinsic defect in their precursor cells but to a defect in the tissue environment that is necessary for migration, proliferation and/or differentiation. We investigated the mechanism of germ cell deficiency in male Sl/Sld mice by producing aggregation chimaeras from Sl/Sld and +/+ embryos. Chimaeric mice with apparent white stripes were obtained. Two of four such chimaeras were fertile and the phenotypes of resulting progenies showed that some Sl/Sld germ cells had differentiated into functioning sperms in the testis of the chimaeras. In cross sections of the testes of chimaeras, both differentiated and nondifferentiated tubules were observed. However, the proportions of type A spermatogonia to Sertoli cells in both types of tubules were comparable to the values observed in differentiated tubules of normal +/+ mice. We reconstructed the whole length of four tubules from serial sections. Differentiated and nondifferentiated segments alternated in a single tubule. The shortest differentiated segment contained about 180 Sertoli cells and the shortest nondifferentiated segment about 150 Sertoli cells. These results suggest that Sertoli cells of either Sl/Sld or +/+ genotype make discrete patches and that differentiation of type A spermatogonia does not occur in patches of Sl/Sld Sertoli cells.


Endocrinology ◽  
2008 ◽  
Vol 149 (6) ◽  
pp. 2773-2781 ◽  
Author(s):  
Gunapala Shetty ◽  
Shan H. Shao ◽  
Connie C. Y. Weng

In adult male mice homozygous for the juvenile spermatogonial depletion (Utp14bjsd) mutation in the Utp14b gene, type A spermatogonia proliferate, but in the presence of testosterone and at scrotal temperatures, these spermatogonia undergo apoptosis just before differentiation. In an attempt to delineate this apoptotic pathway in jsd mice and specifically address the roles of p53- and Fas ligand (FasL) /Fas receptor-mediated apoptosis, we produced jsd mice deficient in p53, Fas, or FasL. Already at the age of 5 wk, less degeneration of spermatogenesis was observed in p53-null-jsd mice than jsd single mutants, and in 8- or 12-wk-old mice, the percentage of seminiferous tubules showing differentiated germ cells [tubule differentiation index (TDI)] was 26–29% in the p53-null-jsd mice, compared with 2–4% in jsd mutants with normal p53. The TDI in jsd mice heterozygous for p53 showed an intermediate TDI of 8–13%. The increase in the differentiated tubules in double-mutant and p53 heterozygous jsd mice was mostly attributable to intermediate and type B spermatogonia; few spermatocytes were present. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling staining showed that most of these differentiated spermatogonia still underwent apoptosis, thereby blocking further continuation of spermatogenesis. In contrast, the percentage of tubules that were differentiated was not significantly altered in either adult Fas null-jsd mice or adult FasL defective gld-jsd double mutant mice as compared with jsd single mutants. Furthermore, caspase-9, but not caspase-8 was immunochemically localized in the adult jsd mice spermatogonia undergoing apoptosis. The results show that p53, but not FasL or Fas, is involved in the apoptosis of type A spermatogonia before/during differentiation in jsd mice that involves the intrinsic pathway of apoptosis. However, apoptosis in the later stages must be a p53-independent process.


2016 ◽  
Vol 201 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ruhui Tian ◽  
Shi Yang ◽  
Yong Zhu ◽  
Shasha Zou ◽  
Peng Li ◽  
...  

Vascular endothelial growth factor (VEGF) plays fundamental roles in testicular development; however, its function on testicular regeneration remains unknown. The objective of this study was to explore the roles VEGF/VEGFR2 signaling plays in mouse germ cells and in mouse testicular regeneration. VEGF and the VEGFR2 antagonist SU5416 were added to culture medium to evaluate their effects on spermatogonial stem cell line (C18-4 cells) proliferation. Testicular cells obtained from newborn male ICR mice were grafted into the dorsal region of male BALB/c nude mice. VEGF and SU5416 were injected into the graft sites to assess the effects of the VEGF and VEGFR2 signaling pathways on testicular reconstitution. The grafts were analyzed after 8 weeks. We found that VEGF promoted C18-4 proliferation in vitro, indicating its role in germ cell survival. HE staining revealed that seminiferous tubules were reconstituted and male germ cells from spermatogonia to spermatids could be observed in testis-like tissues 8 weeks after grafting. A few advantaged male germ cells, including spermatocytes and spermatids, were found in SU5416-treated grafts. Moreover, VEGF enhanced the expression of genes specific for male germ cells and vascularization in 8-week grafts, whereas SU5416 decreased the expression of these genes. SU5416-treated grafts had a lower expression of MVH and CD31, indicating that blockade of VEGF/VEGFR2 signaling reduces the efficiency of seminiferous tubule reconstitution. Collectively, these data suggest that VEGF/VEGFR2 signaling regulates germ cell proliferation and promotes testicular regeneration via direct action on germ cells and the enhancement of vascularization.


1981 ◽  
Vol 89 (2) ◽  
pp. 257-NP ◽  
Author(s):  
YOSHITAKE NISHIMUNE ◽  
TATSUJI HANEJI ◽  
SHIRO AIZAWA

The effect of dibutyryl cyclic AMP (dbcAMP) on DNA synthesis in mouse cryptorchid explants with only type A spermatogonia was examined in vitro. Low concentration of dbcAMP (0·08 mmol/l) stimulated DNA synthesis by germ cells but inhibited that by non-germ cells.


2019 ◽  
Vol 101 (2) ◽  
pp. 478-491 ◽  
Author(s):  
Makoto Hayashi ◽  
Kensuke Ichida ◽  
Sakiko Sadaie ◽  
Misako Miwa ◽  
Ryo Fujihara ◽  
...  

AbstractWe recently established a germ cell transplantation system in salmonids. Donor germ cells transplanted into the body cavity of recipient embryos migrate toward and are incorporated into the recipient gonad, where they undergo gametogenesis. Among the various types of testicular germ cells, only type A spermatogonia (A-SG) can be incorporated into the recipient gonads. Enriching for A-SG is therefore important for improving the efficiency of germ cell transplantation. To enrich for A-SG, an antibody against a cell surface marker is a convenient and powerful approach used in mammals; however, little is known about cell surface markers for A-SG in fish. To that end, we have produced novel monoclonal antibodies (mAbs) against cell-surface molecules of rainbow trout (Oncorhynchus mykiss) A-SG. We inoculated mice with living A-SG isolated from pvasa-GFP transgenic rainbow trout using GFP-dependent flow cytometry. By fusing lymph node cells of the inoculated mice with myeloma cells, we generated 576 hybridomas. To identify hybridomas that produce mAbs capable of labeling A-SG preferentially and effectively, we screened them using cell ELISA, fluorescence microscopy, and flow cytometry. We thereby identified two mAbs that can label A-SG. By using flow cytometry with these two antibodies, we could enrich for A-SG with transplantability to recipient gonads from amongst total testicular cells. Furthermore, one of these mAbs could also label zebrafish (Danio rerio) spermatogonia. Thus, we expect these monoclonal antibodies to be powerful tools for germ cell biology and biotechnology.


1982 ◽  
Vol 94 (1) ◽  
pp. 43-NP ◽  
Author(s):  
Tatsuji Haneji ◽  
Yoshitake Nishimune

In order to study hormonal effects on testicular germ cell differentiation, especially on type A spermatogonia, artificially induced cryptorchid testes of adult mice were cultured in a medium containing testosterone, dihydrotestosterone, tri-iodothyronine, dibutyryl 3′: 5′ cyclic adenosine monophosphate, human chorionic gonadotrophin, LH, FSH, insulin and transferrin. These substances, with the exception of FSH, showed no stimulatory effect on the differentiation of type A spermatogonia. However, FSH activated cell division in type A spermatogonia and stimulated them to differentiate, while LH showed neither the promotion of differentiation nor a synergistic effect on FSH-mediated germ cell differentiation.


Reproduction ◽  
2002 ◽  
pp. 791-799 ◽  
Author(s):  
LB Creemers ◽  
K den Ouden ◽  
AM van Pelt ◽  
DG de Rooij

The culture of spermatogonial cells under well-defined conditions would be an important method for elucidating the mechanisms involved in spermatogenesis and in establishing tissue regeneration in vivo. In this study, a serum-free culture system was established, with type A spermatogonia isolated from adult vitamin A-deficient mice. At days 1, 3 and 7 of culture, the viability and proliferation of cells were monitored. The viability of the cells decreased by day 7 to 10% of the cells present. Proliferation occurred mainly during day 1, when 1% of the germ cells was proliferating. Co-labelling for a germ cell marker (heat shock protein-90alpha, Hsp90alpha), and a marker used to detect dividing cells (bromodeoxyuridine, BrdU), showed that this proliferation was restricted to germ cells. In an attempt to improve these parameters, medium containing fetal calf serum (FCS) was used. Viability was not influenced by serum, but proliferation was markedly enhanced. However, after day 7 of incubation with FCS, co-immunolocalization for Hsp90alpha and BrdU showed a preferential proliferation of somatic cells. Comparison of cultures of adult cells with cultures of prepubertal germ cells, commonly used in studies of spermatogenesis, showed that prepubertal germ cells are twice as viable. In addition, a different proliferation profile was observed, with a peak at day 3. Here, a distinct proliferation of somatic cells was also noted. The results from the present study indicate that the origin of isolated germ cells partly determines culture outcome and that cultures of prepubertal germ cells may not be representative for adult spermatogenesis. Moreover, adding FCS to the culture medium invokes the risk of profound and undesirable effects on cell composition, also underlining the need for identification of germ cells during culture.


Reproduction ◽  
2002 ◽  
pp. 3-11 ◽  
Author(s):  
R Gosden ◽  
M Nagano

Individuals may regard reproduction as optional but sufficient number of them must be productive to perpetuate the species. The reproductive system is surprisingly vulnerable and depends, among other things, on a limited endowment of oocytes, controlled proliferation of spermatogonial stem cells and the genetic integrity of both. The developmental competence of oocytes and spermatogonial stem cells is maintained by evolved mechanisms for cellular detoxification and genomic stability, and excess or damaged cells are eliminated by apoptosis. Gonadal failure as a result of germ cell depletion can occur at any age, and from the effects of chemical cytotoxicity, disease and infection as well as genetic predisposition. Among extrinsic factors, alkylating agents and ionizing radiation are important causes of iatrogenic gonadal failure in young women and men. In animal models, there is evidence that hormonal manipulation, deletion of genes involved in apoptotic pathways and dietary manipulation can protect against natural and induced germ cell loss, but evidence in humans is absent or unclear. Assisted reproductive technologies (ARTs) provide an ensemble of strategies for preserving fertility in patients and commercially valuable or endangered species. Semen cryopreservation was the first technology for preserving male fertility, but this cannot serve prepubertal boys, for whom banking of testicular biopsies may provide a future option. In sterilized rodents, cryopreserved spermatogonial stem cells can recolonize seminiferous tubules and reinitiate spermatogenesis, and subcutaneous implantation of intact tubules can generate spermatozoa for fertilization in vitro by intracytoplasmic sperm injection. Transplantation of frozen-banked ovarian tissue is well-established for restoring cyclicity and fertility and is currently undergoing clinical evaluation for cancer patients. When restoration of natural fertility is unnecessary or reimplantation is unsafe, it is desirable to culture the germ cells from thawed tissue in vitro until they reach the stage at which they can be fertilized. Low temperature banking of immature germ cells is potentially very versatile, but storage of embryos and, to a lesser extent, mature oocytes is already practised in a number of species, including humans, and is likely to remain a mainstay for fertility preservation.


Sign in / Sign up

Export Citation Format

Share Document