Morphological evolution and molecular phylogenetics of the Merostachys clade (Poaceae: Bambusoideae: Bambuseae: Arthrostylidiinae) based on multi-locus plastid sequences

2020 ◽  
Vol 195 (1) ◽  
pp. 53-76
Author(s):  
Ronaldo Vinícius-Silva ◽  
Lynn G Clark ◽  
Jéferson Nunes Fregonezi ◽  
Ana Paula Santos-Gonçalves

Abstract Merostachys is a Neotropical woody bamboo genus that occurs in the understory and along forest borders. Our taxonomic studies of its species and morphological analyses have allowed us to recognize morphological groups in the genus. Previous molecular analyses, which included relatively few species, supported Merostachys as monophyletic and sister to Actinocladum or Athroostachys. We here provide a phylogenetic estimation for Merostachys based on a broader taxon sampling and seven plastid markers (one coding: ndhF 3′ end; four intergenic spacers: rps16-trnQ, trnC-rpoB, trnD-trnT and trnT-trnL; and two introns: rpl16 and rps16). We aimed to test the monophyly of the genus, to verify its relationship with other genera of Arthrostylidiinae, mainly Athroostachys and Actinocladum, and to test whether the previously identified morphological groups were congruent with the molecular data. The monophyly of the genus was confirmed, as was its sister relationship with Athroostachys, although alternate hypothesis testing could not reject a sister relationship with Actinocladum. Two well-supported clades in Merostachys were recovered, one of which encompasses a polytomy. These clades did not exhibit consistent morphological synapomorphies and were not congruent with the morphological groups; however, floret surface (shiny vs. dull) was correlated with the two clades. The lack of resolution in Merostachys, as exemplified by the polytomy, can be attributed mainly to incomplete lineage sorting, suggesting a recent radiation in this group.

2020 ◽  
Author(s):  
Fernando Lopes ◽  
Larissa R Oliveira ◽  
Amanda Kessler ◽  
Yago Beux ◽  
Enrique Crespo ◽  
...  

Abstract The phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genus Arctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 to 2.5 Ma. Otaria diverged first, followed by Phocarctos and then four major lineages within Arctocephalus. However, we found Zalophus to be non-monophyletic, with California (Z. californianus) and Steller sea lions (Eumetopias jubatus) grouping closer than the Galapagos sea lion (Z. wollebaeki) with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family.


2020 ◽  
Vol 194 (1) ◽  
pp. 84-99
Author(s):  
Inelia Escobar ◽  
Eduardo Ruiz-Ponce ◽  
Paula J Rudall ◽  
Michael F Fay ◽  
Oscar Toro-Núñez ◽  
...  

Abstract Gilliesieae are a South American tribe of Amaryllidaceae characterized by high floral diversity. Given different taxonomic interpretations and proposals for generic and specific relationships, a representative phylogenetic analysis is required to clarify the systematics of this group. The present study provides a framework for understanding phylogenetic relationships and contributing to the development of an appropriate taxonomic treatment of Gilliesieae. Molecular analyses, based on nuclear (ITS) and plastid DNA sequences (trnL-F and rbcL), resolve with strong support the monophyly of the tribe and the differentiation of two major clades. Clade I comprises the genera Gilliesia, Gethyum and Solaria and Clade II includes Miersia and Speea. These well-supported clades are mostly congruent with vegetative and karyotype characters rather than, e.g., floral symmetry. At the generic level, all molecular analyses reveal the paraphyly of Gilliesia and Miersia. Gethyum was found to be paraphyletic, resulting in the confirmation of Ancrumia as a distinct genus. Several instances of incongruent phylogenetic signals were found among data sets. The calibrated tree suggests a recent diversification of the tribe (Pliocene–Pleistocene), a contemporary process of speciation in which instances of hybridization and incomplete lineage sorting could explain patterns of paraphyly and incongruence of floral morphology.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10896
Author(s):  
José Cerca ◽  
Angel G. Rivera-Colón ◽  
Mafalda S. Ferreira ◽  
Mark Ravinet ◽  
Michael D. Nowak ◽  
...  

Morphologically similar species, that is cryptic species, may be similar or quasi-similar owing to the deceleration of morphological evolution and stasis. While the factors underlying the deceleration of morphological evolution or stasis in cryptic species remain unknown, decades of research in the field of paleontology on punctuated equilibrium have originated clear hypotheses. Species are expected to remain morphologically identical in scenarios of shared genetic variation, such as hybridization and incomplete lineage sorting, or in scenarios where bottlenecks reduce genetic variation and constrain the evolution of morphology. Here, focusing on three morphologically similar Stygocapitella species, we employ a whole-genome amplification method (WGA) coupled with double-digestion restriction-site associated DNA sequencing (ddRAD) to reconstruct the evolutionary history of the species complex. We explore population structure, use population-level statistics to determine the degree of connectivity between populations and species, and determine the most likely demographic scenarios which generally reject for recent hybridization. We find that the combination of WGA and ddRAD allowed us to obtain genomic-level data from microscopic eukaryotes (∼1 millimetre) opening up opportunities for those working with population genomics and phylogenomics in such taxa. The three species share genetic variance, likely from incomplete lineage sorting and ancient admixture. We speculate that the degree of shared variation might underlie morphological similarity in the Atlantic species complex.


2011 ◽  
Vol 279 (1734) ◽  
pp. 1847-1856 ◽  
Author(s):  
Leonardo Campagna ◽  
Pilar Benites ◽  
Stephen C. Lougheed ◽  
Darío A. Lijtmaer ◽  
Adrián S. Di Giacomo ◽  
...  

Adaptive radiations have helped shape how we view animal speciation, particularly classic examples such as Darwin's finches, Hawaiian fruitflies and African Great Lakes cichlids. These ‘island’ radiations are comparatively recent, making them particularly interesting because the mechanisms that caused diversification are still in motion. Here, we identify a new case of a recent bird radiation within a continentally distributed species group; the capuchino seedeaters comprise 11 Sporophila species originally described on the basis of differences in plumage colour and pattern in adult males. We use molecular data together with analyses of male plumage and vocalizations to understand species limits of the group. We find marked phenotypic variation despite lack of mitochondrial DNA monophyly and few differences in other putatively neutral nuclear markers. This finding is consistent with the group having undergone a recent radiation beginning in the Pleistocene, leaving genetic signatures of incomplete lineage sorting, introgressive hybridization and demographic expansions. We argue that this apparent uncoupling between neutral DNA homogeneity and phenotypic diversity is expected for a recent group within the framework of coalescent theory. Finally, we discuss how the ecology of open habitats in South America during the Pleistocene could have helped promote this unique and ongoing radiation.


2019 ◽  
Author(s):  
Diego F. Morales-Briones ◽  
Gudrun Kadereit ◽  
Delphine T. Tefarikis ◽  
Michael J. Moore ◽  
Stephen A. Smith ◽  
...  

AbstractGene tree discordance in large genomic datasets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The dataset included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations.


ZooKeys ◽  
2020 ◽  
Vol 977 ◽  
pp. 101-161
Author(s):  
Shengchao Shi ◽  
Meihua Zhang ◽  
Feng Xie ◽  
Jianping Jiang ◽  
Wulin Liu ◽  
...  

Multiple disciplines can help to discover cryptic species and resolve taxonomic confusions. The Asian horned toad genus Megophryssensu lato as a diverse group was proposed to contain dozens of cryptic species. Based on molecular phylogenetics, morphology, osteology, and bioacoustics data, the species profiles of Megophrys toads in the eastern corner of Himalayas in Medog County, Tibet Autonomous Region, China was investigated. The results indicated that this small area harbored at least four Megophrys species, i.e., M. medogensis, M. pachyproctus, Megophrys zhouisp. nov., and Megophrys yeaesp. nov., the latter two being described in this study. Additionally, the mitochondrial DNA trees nested the low-middle-elevation and high-elevation groups of M. medogensis into a monophyletic group, being in discordance with the paraphyletic relationship between them revealed in the nuclear DNA trees. The findings highlighted the underestimated biodiversity in Himalayas, and further indicated that the Megophrys toads here have been probably experienced complicated evolutionary history, for example, introgression between clades or incomplete lineage sorting and niche divergences in microhabitats. Anyway, it is urgent for us to explore the problems because these toads are suffering from increasing threats from human activities and climatic changes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8271
Author(s):  
Drew J. Duckett ◽  
Tara A. Pelletier ◽  
Bryan C. Carstens

Phylogenetic estimation under the multispecies coalescent model (MSCM) assumes all incongruence among loci is caused by incomplete lineage sorting. Therefore, applying the MSCM to datasets that contain incongruence that is caused by other processes, such as gene flow, can lead to biased phylogeny estimates. To identify possible bias when using the MSCM, we present P2C2M.SNAPP. P2C2M.SNAPP is an R package that identifies model violations using posterior predictive simulation. P2C2M.SNAPP uses the posterior distribution of species trees output by the software package SNAPP to simulate posterior predictive datasets under the MSCM, and then uses summary statistics to compare either the empirical data or the posterior distribution to the posterior predictive distribution to identify model violations. In simulation testing, P2C2M.SNAPP correctly classified up to 83% of datasets (depending on the summary statistic used) as to whether or not they violated the MSCM model. P2C2M.SNAPP represents a user-friendly way for researchers to perform posterior predictive model checks when using the popular SNAPP phylogenetic estimation program. It is freely available as an R package, along with additional program details and tutorials.


2020 ◽  
Author(s):  
Fernando Lopes ◽  
Larissa R. Oliveira ◽  
Amanda Kessler ◽  
Yago Beux ◽  
Enrique Crespo ◽  
...  

AbstractThe phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genusArctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 to 2.5 Ma.Otariadiverged first, followed byPhocarctosand then four major lineages withinArctocephalus. However, we foundZalophusto be non-monophyletic, with California(Z. californianus)and Steller sea lions(Eumetopias jubatus)grouping closer than the Galapagos sea lion (Z. wollebaeki)with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family.


2020 ◽  
Vol 70 (1) ◽  
pp. 49-66 ◽  
Author(s):  
Paul M Hime ◽  
Alan R Lemmon ◽  
Emily C Moriarty Lemmon ◽  
Elizabeth Prendini ◽  
Jeremy M Brown ◽  
...  

Abstract Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree–species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree–species tree discordance; genomics; information theory.]


2009 ◽  
Vol 34 (3) ◽  
pp. 530-552 ◽  
Author(s):  
Wendy L. Clement ◽  
George D. Weiblen

The mulberry family Moraceae comprises 37 genera and approximately 1,100 species distributed throughout tropical and temperate regions worldwide. Moraceae exhibit a complex array of inflorescence architectures, breeding systems, and pollination syndromes, which forms the basis of traditional taxonomic classification. However, morphologically based classification conflicts with evolutionary relationships proposed by molecular phylogenetics. In this study we assembled a morphological character matrix for analysis separately and in combination with existing molecular data. We evaluated 81 vegetative, reproductive, and wood anatomical characters for 94 species representing nearly all Moraceae genera. Using parsimony and Bayesian methods, these characters were evaluated with respect to ndhF chloroplast and 26S nuclear DNA sequences. Topological comparisons tested whether opposing classification schemes are more or less supported by the data. Results did not support any classification of Moraceae based on morphology. We present a revised tribal classification and describe a new tribe, Maclureae, revise the membership of tribe Castilleae and describe two subtribes, Castillineae and Antiaropsineae, and reinstate the genera Malaisia (including Malaisia scandens) and Sloetia (including Sloetia elongata). Lastly we discuss the evolution of inflorescence architecture in relation to other floral features.


Sign in / Sign up

Export Citation Format

Share Document