scholarly journals Rapid phenotypic evolution during incipient speciation in a continental avian radiation

2011 ◽  
Vol 279 (1734) ◽  
pp. 1847-1856 ◽  
Author(s):  
Leonardo Campagna ◽  
Pilar Benites ◽  
Stephen C. Lougheed ◽  
Darío A. Lijtmaer ◽  
Adrián S. Di Giacomo ◽  
...  

Adaptive radiations have helped shape how we view animal speciation, particularly classic examples such as Darwin's finches, Hawaiian fruitflies and African Great Lakes cichlids. These ‘island’ radiations are comparatively recent, making them particularly interesting because the mechanisms that caused diversification are still in motion. Here, we identify a new case of a recent bird radiation within a continentally distributed species group; the capuchino seedeaters comprise 11 Sporophila species originally described on the basis of differences in plumage colour and pattern in adult males. We use molecular data together with analyses of male plumage and vocalizations to understand species limits of the group. We find marked phenotypic variation despite lack of mitochondrial DNA monophyly and few differences in other putatively neutral nuclear markers. This finding is consistent with the group having undergone a recent radiation beginning in the Pleistocene, leaving genetic signatures of incomplete lineage sorting, introgressive hybridization and demographic expansions. We argue that this apparent uncoupling between neutral DNA homogeneity and phenotypic diversity is expected for a recent group within the framework of coalescent theory. Finally, we discuss how the ecology of open habitats in South America during the Pleistocene could have helped promote this unique and ongoing radiation.

2020 ◽  
Vol 96 (1) ◽  
pp. 159-173
Author(s):  
Marc Domènech ◽  
Luís C. Crespo ◽  
Alba Enguídanos ◽  
Miquel A. Arnedo

The incorporation of molecular data into current taxonomic practise has unravelled instances of incongruence among different data sets. Here we report a case of mitochondrial discordance in cobweb spiders of the genus Theridion Walckenaer, 1805 from the Iberian Peninsula. Morphological examination of samples from a country-wide bioinventory initiative revealed the existence of a putative new species and two nominal species belonging to the Theridion melanurum species group. The morphological delineation was supported by the molecular analysis of a nuclear marker but was at odds with the groups circumscribed by a mitochondrial marker. The causes of this discordance remained uncertain, once sample and sequencing errors and the existence of pseudogenes were discarded. The full sorting observed in the alleles of the more slowly evolving nuclear marker ruled out incomplete lineage sorting, while the geographic patterns recovered were difficult to reconciliate with ongoing hybridization. We propose that the apparent incongruence observed is most likely the result of old introgression events in a group with high dispersal abilities. We further speculate that endosymbiont-driven cytoplasmatic incompatibility could be involved in the fixation of mitochondrial haplotypes across species barriers. Additionally, we describe the new species T. promiscuumsp. nov., based on the presence of diagnostic morphological traits, backed up by the nuclear data delimitation. Our study contributes yet another example of the perils of relying on single methods or data sources to summarise the variation generated by multiple processes acting through thousands of years of evolution and supports the key role of biological inventories in improving our knowledge of invertebrate biodiversity.


2020 ◽  
Author(s):  
Fernando Lopes ◽  
Larissa R Oliveira ◽  
Amanda Kessler ◽  
Yago Beux ◽  
Enrique Crespo ◽  
...  

Abstract The phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genus Arctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 to 2.5 Ma. Otaria diverged first, followed by Phocarctos and then four major lineages within Arctocephalus. However, we found Zalophus to be non-monophyletic, with California (Z. californianus) and Steller sea lions (Eumetopias jubatus) grouping closer than the Galapagos sea lion (Z. wollebaeki) with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family.


2020 ◽  
Author(s):  
Sungsik Kong ◽  
Laura S. Kubatko

AbstractInterspecific hybridization is an important evolutionary phenomenon that generates genetic variability in a population and fosters species diversity in nature. The availability of large genome scale datasets has revolutionized hybridization studies to shift from the examination of the presence or absence of hybrids in nature to the investigation of the genomic constitution of hybrids and their genome-specific evolutionary dynamics. Although a handful of methods have been proposed in an attempt to identify hybrids, accurate detection of hybridization from genomic data remains a challenging task. The available methods can be classified broadly as site pattern frequency based and population genetic clustering approaches, though the performance of the two classes of methods under different hybridization scenarios has not been extensively examined. Here, we use simulated data to comparatively evaluate the performance of four tools that are commonly used to infer hybridization events: the site pattern frequency based methods HyDe and the D-statistic (i.e., the ABBA-BABA test), and the population clustering approaches structure and ADMIXTURE. We consider single hybridization scenarios that vary in the time of hybridization and the amount of incomplete lineage sorting (ILS) for different proportions of parental contributions (γ); introgressive hybridization; multiple hybridization scenarios; and a mixture of ancestral and recent hybridization scenarios. We focus on the statistical power to detect hybridization, the false discovery rate (FDR) for the D-statistic and HyDe, and the accuracy of the estimates of γ as measured by the mean squared error for HyDe, structure, and ADMIXTURE. Both HyDe and the D-statistic demonstrate a high level of detection power in all scenarios except those with high ILS, although the D-statistic often has an unacceptably high FDR. The estimates of γ in HyDe are impressively robust and accurate whereas structure and ADMIXTURE sometimes fail to identify hybrids, particularly when the proportional parental contributions are asymmetric (i.e., when γ is close to 0). Moreover, the posterior distribution estimated using structure exhibits multimodality in many scenarios, making interpretation difficult. Our results provide guidance in selecting appropriate methods for identifying hybrid populations from genomic data.


2020 ◽  
Vol 37 (5) ◽  
pp. 1295-1305 ◽  
Author(s):  
Sean P Mullen ◽  
Nicholas W VanKuren ◽  
Wei Zhang ◽  
Sumitha Nallu ◽  
Evan B Kristiansen ◽  
...  

Abstract Understanding the origin and maintenance of adaptive phenotypic novelty is a central goal of evolutionary biology. However, both hybridization and incomplete lineage sorting can lead to genealogical discordance between the regions of the genome underlying adaptive traits and the remainder of the genome, decoupling inferences about character evolution from population history. Here, to disentangle these effects, we investigated the evolutionary origins and maintenance of Batesian mimicry between North American admiral butterflies (Limenitis arthemis) and their chemically defended model (Battus philenor) using a combination of de novo genome sequencing, whole-genome resequencing, and statistical introgression mapping. Our results suggest that balancing selection, arising from geographic variation in the presence or absence of the unpalatable model, has maintained two deeply divergent color patterning haplotypes that have been repeatedly sieved among distinct mimetic and nonmimetic lineages of Limenitis via introgressive hybridization.


2019 ◽  
Author(s):  
Diego F. Morales-Briones ◽  
Gudrun Kadereit ◽  
Delphine T. Tefarikis ◽  
Michael J. Moore ◽  
Stephen A. Smith ◽  
...  

AbstractGene tree discordance in large genomic datasets can be caused by evolutionary processes such as incomplete lineage sorting and hybridization, as well as model violation, and errors in data processing, orthology inference, and gene tree estimation. Species tree methods that identify and accommodate all sources of conflict are not available, but a combination of multiple approaches can help tease apart alternative sources of conflict. Here, using a phylotranscriptomic analysis in combination with reference genomes, we test a hypothesis of ancient hybridization events within the plant family Amaranthaceae s.l. that was previously supported by morphological, ecological, and Sanger-based molecular data. The dataset included seven genomes and 88 transcriptomes, 17 generated for this study. We examined gene-tree discordance using coalescent-based species trees and network inference, gene tree discordance analyses, site pattern tests of introgression, topology tests, synteny analyses, and simulations. We found that a combination of processes might have generated the high levels of gene tree discordance in the backbone of Amaranthaceae s.l. Furthermore, we found evidence that three consecutive short internal branches produce anomalous trees contributing to the discordance. Overall, our results suggest that Amaranthaceae s.l. might be a product of an ancient and rapid lineage diversification, and remains, and probably will remain, unresolved. This work highlights the potential problems of identifiability associated with the sources of gene tree discordance including, in particular, phylogenetic network methods. Our results also demonstrate the importance of thoroughly testing for multiple sources of conflict in phylogenomic analyses, especially in the context of ancient, rapid radiations. We provide several recommendations for exploring conflicting signals in such situations.


2020 ◽  
Vol 24 (4) ◽  
pp. 420-426
Author(s):  
A. A. Poroshina ◽  
D. Y. Sherbakov ◽  
T. E. Peretolchina

In ancient freshwater lakes, an abnormally large species diversity is observed. The mechanisms that g nerated extremely high biodiversity in the ancient lakes have not been sufficiently studied and remain only partially known. Sequences of environmental changes in highly complex ecosystems such as Lake Baikal, may induce sophisticated combinations of microevolutionary processes. These processes are likely to result in unusual “patterns” of genetic variability of species. The most unusual patterns include the ones when speciation is followed by incomplete lineage sorting as well as mitochondrial or nuclear introgression. All these phenomena are diagnosed by comparing the topologies of phylogenetic trees inferred from molecular markers of evolution located in mitochondria and nuclei. Mitochondrial and nuclear introgression is a particularly interesting and complex case, which is the process of incorporating the gene alleles of one species into the gene pool of a sister species due to interspecific hybridization (introgressive hybridization). In many cases, existing methods for molecular phylogenetic analysis do not automatically allow the observed patterns of polymorphism to be explained and, therefore, cannot provide hypotheses that would explain the mechanisms which resulted to these patterns. Here we use adaptive dynamics models to study neutral molecular evolution under various scenarios of interaction between sister species and the environment. We propose and justify a set of criteria for detecting how two evolutionary trees may differ, with a special focus on comparing a tree inferred from nuclear DNA to one from mitochondrial DNA. The criteria react to branching pattern and branch lengths, including relative distances from ancestral lineages. Simulations show that the criteria allow fast and automated detection of various types of introgression, secondary breaches of reproductive barriers, and incomplete lineage sorting.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256126
Author(s):  
Anna Victoria Silvério R. Mauad ◽  
Leila do Nascimento Vieira ◽  
Valter Antônio de Baura ◽  
Eduardo Balsanelli ◽  
Emanuel Maltempi de Souza ◽  
...  

We present the first comparative plastome study of Pleurothallidinae with analyses of structural and molecular characteristics and identification of the ten most-variable regions to be incorporated in future phylogenetic studies. We sequenced complete plastomes of eight species in the subtribe and compared phylogenetic results of these to parallel analyses of their nuclear ribosomal DNA operon (26S, 18S, and 5.8S plus associated spacers) and partial mitochondrial genome sequences (29–38 genes and partial introns). These plastomes have the typical quadripartite structure for which gene content is similar to those of other orchids, with variation only in the composition of the ndh genes. The independent loss of ndh genes had an impact on which genes border the inverted repeats and thus the size of the small single-copy region, leading to variation in overall plastome length. Analyses of 68 coding sequences indicated the same pattern of codon usage as in other orchids, and 13 protein-coding genes under positive selection were detected. Also, we identified 62 polymorphic microsatellite loci and ten highly variable regions, for which we designed primers. Phylogenomic analyses showed that the top ten mutational hotspots represent well the phylogenetic relationships found with whole plastome sequences. However, strongly supported incongruence was observed among plastid, nuclear ribosomal DNA operon, and mitochondrial DNA trees, indicating possible occurrence of incomplete lineage sorting and/or introgressive hybridization. Despite the incongruence, the mtDNA tree retrieved some clades found in other analyses. These results, together with performance in recent studies, support a future role for mitochondrial markers in Pleurothallidinae phylogenetics.


2020 ◽  
Author(s):  
Fernando Lopes ◽  
Larissa R. Oliveira ◽  
Amanda Kessler ◽  
Yago Beux ◽  
Enrique Crespo ◽  
...  

AbstractThe phylogeny and systematics of fur seals and sea lions (Otariidae) have long been studied with diverse data types, including an increasing amount of molecular data. However, only a few phylogenetic relationships have reached acceptance because of strong gene-tree species tree discordance. Divergence times estimates in the group also vary largely between studies. These uncertainties impeded the understanding of the biogeographical history of the group, such as when and how trans-equatorial dispersal and subsequent speciation events occurred. Here we used high-coverage genome-wide sequencing for 14 of the 15 species of Otariidae to elucidate the phylogeny of the family and its bearing on the taxonomy and biogeographical history. Despite extreme topological discordance among gene trees, we found a fully supported species tree that agrees with the few well-accepted relationships and establishes monophyly of the genusArctocephalus. Our data support a relatively recent trans-hemispheric dispersal at the base of a southern clade, which rapidly diversified into six major lineages between 3 to 2.5 Ma.Otariadiverged first, followed byPhocarctosand then four major lineages withinArctocephalus. However, we foundZalophusto be non-monophyletic, with California(Z. californianus)and Steller sea lions(Eumetopias jubatus)grouping closer than the Galapagos sea lion (Z. wollebaeki)with evidence for introgression between the two genera. Overall, the high degree of genealogical discordance was best explained by incomplete lineage sorting resulting from quasi-simultaneous speciation within the southern clade with introgresssion playing a subordinate role in explaining the incongruence among and within prior phylogenetic studies of the family.


2020 ◽  
Author(s):  
Mafalda S Ferreira ◽  
Matthew R Jones ◽  
Colin M Callahan ◽  
Liliana Farelo ◽  
Zelalem Tolesa ◽  
...  

Abstract Hybridization may often be an important source of adaptive variation, but the extent and long-term impacts of introgression have seldom been evaluated in the phylogenetic context of a radiation. Hares (Lepus) represent a widespread mammalian radiation of 32 extant species characterized by striking ecological adaptations and recurrent admixture. To understand the relevance of introgressive hybridization during the diversification of Lepus, we analyzed whole exome sequences (61.7 Mb) from 15 species of hares (1- 4 individuals per species), spanning the global distribution of the genus, and two outgroups. We used a coalescent framework to infer species relationships and divergence times, despite extensive genealogical discordance. We found high levels of allele sharing among species and show that this reflects extensive incomplete lineage sorting and temporally layered hybridization. Our results revealed recurrent introgression at all stages along the Lepus radiation, including recent gene flow between extant species since the last glacial maximum, but also pervasive ancient introgression occurring since near the origin of the hare lineages. We show that ancient hybridization between northern hemisphere species has resulted in shared variation of potential adaptive relevance to highly seasonal environments, including genes involved in circadian rhythm regulation, pigmentation, and thermoregulation. Our results illustrate how the genetic legacy of ancestral hybridization may persist across a radiation, leaving a long-lasting signature of shared genetic variation that may contribute to adaptation.


2018 ◽  
Vol 65 (5) ◽  
pp. 589-597 ◽  
Author(s):  
Wenjuan Wang ◽  
Yafang Wang ◽  
Fumin Lei ◽  
Yang Liu ◽  
Haitao Wang ◽  
...  

Abstract Incomplete lineage sorting and introgression are 2 major and nonexclusive causes of species-level non-monophyly. Distinguishing between these 2 processes is notoriously difficult because they can generate similar genetic signatures. Previous studies have suggested that 2 closely related duck species, the Chinese spot-billed duck Anas zonorhyncha and the mallard A. platyrhynchos were polyphyletically intermixed. Here, we utilized a wide geographical sampling, multilocus data and a coalescent-based model to revisit this system. Our study confirms the finding that Chinese spot-billed ducks and Mallards are not monophyletic. There was no apparent interspecific differentiation across loci except those at the mitochondrial DNA (mtDNA) control region and the Z chromosome (CHD1Z). Based on an isolation-with-migration model and the geographical distribution of lineages, we suggest that both introgression and incomplete lineage sorting might contribute to the observed non-monophyly of the 2 closely related duck species. The mtDNA introgression was asymmetric, with high gene flow from Chinese spot-billed ducks to Mallards and negligible gene flow in the opposite direction. Given that the 2 duck species are phenotypically distinctive but weakly genetically differentiated, future work based on genome-scale data is necessary to uncover genomic regions that are involved in divergence, and this work may provide further insights into the evolutionary histories of the 2 species and other waterfowls.


Sign in / Sign up

Export Citation Format

Share Document