Antisaccade, a predictive marker for freezing of gait in Parkinson’s disease and gait/gaze network connectivity

Brain ◽  
2020 ◽  
Author(s):  
Cécile Gallea ◽  
Benoit Wicki ◽  
Claire Ewenczyk ◽  
Sophie Rivaud-Péchoux ◽  
Lydia Yahia-Cherif ◽  
...  

Abstract Freezing of gait is a challenging sign of Parkinson’s disease associated with disease severity and progression and involving the mesencephalic locomotor region. No predictive factor of freezing has been reported so far. The primary objective of this study was to identify predictors of freezing occurrence at 5 years. In addition, we tested whether functional connectivity of the mesencephalic locomotor region could explain the oculomotor factors at baseline that were predictive of freezing onset. We performed a prospective study investigating markers (parkinsonian signs, cognitive status and oculomotor recordings, with a particular focus on the antisaccade latencies) of disease progression at baseline and at 5 years. We identified two groups of patients defined by the onset of freezing at 5 years of follow-up; the ‘Freezer’ group was defined by the onset of freezing in the ON medication condition during follow-up (n = 17), while the ‘non-Freezer’ group did not (n = 8). Whole brain resting-state functional MRI was recorded at baseline to determine how antisaccade latencies were associated with connectivity of the mesencephalic locomotor region networks in patients compared to 25 age-matched healthy volunteers. Results showed that, at baseline and compared to the non-Freezer group, the Freezer group had equivalent motor or cognitive signs, but increased antisaccade latencies (P = 0.008). The 5-year course of freezing of gait was correlated with worsening antisaccade latencies (P = 0.0007). Baseline antisaccade latencies was also predictive of the freezing onset (χ2 = 0.008). Resting state connectivity of mesencephalic locomotor region networks correlated with (i) antisaccade latency differently in patients and healthy volunteers at baseline; and (ii) the further increase of antisaccade latency at 5 years. We concluded that antisaccade latency is a predictive marker of the 5-year onset of freezing of gait. Our study suggests that functional networks associated with gait and gaze control are concurrently altered during the course of the disease.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nicholas D’Cruz ◽  
Griet Vervoort ◽  
Sima Chalavi ◽  
Bauke W. Dijkstra ◽  
Moran Gilat ◽  
...  

AbstractThe onset of freezing of gait (FOG) in Parkinson’s disease (PD) is a critical milestone, marked by a higher risk of falls and reduced quality of life. FOG is associated with alterations in subcortical neural circuits, yet no study has assessed whether subcortical morphology can predict the onset of clinical FOG. In this prospective multimodal neuroimaging cohort study, we performed vertex-based analysis of grey matter morphology in fifty-seven individuals with PD at study entry and two years later. We also explored the behavioral correlates and resting-state functional connectivity related to these local volume differences. At study entry, we found that freezers (N = 12) and persons who developed FOG during the course of the study (converters) (N = 9) showed local inflations in bilateral thalamus in contrast to persons who did not (non-converters) (N = 36). Longitudinally, converters (N = 7) also showed local inflation in the left thalamus, as compared to non-converters (N = 36). A model including sex, daily levodopa equivalent dose, and local thalamic inflation predicted conversion with good accuracy (AUC: 0.87, sensitivity: 88.9%, specificity: 77.8%). Exploratory analyses showed that local thalamic inflations were associated with larger medial thalamic sub-nuclei volumes and better cognitive performance. Resting-state analyses further revealed that converters had stronger thalamo-cortical coupling with limbic and cognitive regions pre-conversion, with a marked reduction in coupling over the two years. Finally, validation using the PPMI cohort suggested FOG-specific non-linear evolution of thalamic local volume. These findings provide markers of, and deeper insights into conversion to FOG, which may foster earlier intervention and better mobility for persons with PD.


Neuroscience ◽  
2019 ◽  
Vol 418 ◽  
pp. 311-317 ◽  
Author(s):  
Alexandra Potvin-Desrochers ◽  
Trina Mitchell ◽  
Thomas Gisiger ◽  
Caroline Paquette

2021 ◽  
pp. 1-17
Author(s):  
Diego Santos García ◽  
Lucía García Roca ◽  
Teresa de Deus Fonticoba ◽  
Carlos Cores Bartolomé ◽  
Lucía Naya Ríos ◽  
...  

Background: Constipation has been linked to cognitive impairment development in Parkinson’s disease (PD). Objective: Our aim was to analyze cognitive changes observed in PD patients and controls from a Spanish cohort with regards to the presence or not of constipation. Methods: PD patients and controls recruited from 35 centers of Spain from the COPPADIS cohort from January 2016 to November 2017 were followed-up during 2 years. The change in cognitive status from baseline (V0) to 2-year follow-up was assessed with the PD-CRS (Parkinson’s Disease Cognitive Rating Scale). Subjects with a score ≥1 on item 21 of the NMSS (Non-Motor Symptoms Scale) at baseline (V0) were considered as “with constipation”. Regression analyses were applied for determining the contribution of constipation in cognitive changes. Results: At V0, 39.7% (198/499) of PD patients presented constipation compared to 11.4% of controls (14/123) (p < 0.0001). No change was observed in cognitive status (PD-CRS total score) neither in controls without constipation (from 100.24±13.72 to 100.27±13.68; p = 0.971) and with constipation (from 94.71±10.96 to 93.93±13.03; p = 0.615). The PD-CRS total score decreased significantly in PD patients with constipation (from 89.14±15.36 to 85.97±18.09; p < 0.0001; Coehn’s effect = –0.35) compared to patients without constipation (from 93.92±15.58 to 93.14±17.52; p = 0.250) (p = 0.018). In PD patients, to suffer from constipation at V0 was associated with a decrease in the PD-CRS total score from V0 to V2 (β= –0.1; 95% CI, –4.36 – –0.27; p = 0.026) and having cognitive impairment at V2 (OR = 1.79; 95% CI, 1.01 – 3.17; p = 0.045). Conclusion: Constipation is associated with cognitive decline in PD patients but not in controls.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuting Li ◽  
Xiuhang Ruan ◽  
E. Li ◽  
Guoqin Zhang ◽  
Yanjun Liu ◽  
...  

Background. Freezing of gait (FOG) is a disabling gait disorder influencing patients with Parkinson’s disease (PD). Accumulating evidence suggests that FOG is related to the functional alterations within brain networks. We investigated the changes in brain resting-state functional connectivity (FC) in patients with PD with FOG (FOG+) and without FOG (FOG-). Methods. Resting-state functional magnetic resonance imaging (RS-fMRI) data were collected from 55 PD patients (25 FOG+ and 30 FOG-) and 26 matched healthy controls (HC). Differences in intranetwork connectivity between FOG+, FOG-, and HC individuals were explored using independent component analysis (ICA). Results. Seven resting-state networks (RSNs) with abnormalities, including motor, executive, and cognitive-related networks, were found in PD patients compared to HC. Compared to FOG- patients, FOG+ patients had increased FC in advanced cognitive and attention-related networks. In addition, the FC values of the auditory network and default mode network were positively correlated with the Gait and Falls Questionnaire (GFQ) and Freezing of Gait Questionnaire (FOGQ) scores in FOG+ patients. Conclusions. Our findings suggest that the neural basis of PD is associated with impairments of multiple functional networks. Notably, alterations of advanced cognitive and attention-related networks rather than motor networks may be related to the mechanism of FOG.


2019 ◽  
Vol 131 (6) ◽  
pp. 1797-1804 ◽  
Author(s):  
Ryul Kim ◽  
Han-Joon Kim ◽  
Chaewon Shin ◽  
Hyeyoung Park ◽  
Aryun Kim ◽  
...  

OBJECTIVESubthalamic nucleus deep brain stimulation (STN DBS) is effective against freezing of gait (FOG) in Parkinson’s disease (PD); however, whether this effect persists over the long term is debated. The aim of the current study was to investigate the long-term effect of STN DBS on FOG in patients with PD.METHODSData on 52 cases in which PD patients received bilateral STN DBS were obtained from a prospective registry. The authors blindly analyzed FOG incidence and its severity from the videotapes of a 5-m walking task at the baseline and at the 1-, 2-, and 5- or 7-year follow-up visits. They also compared the axial score from the Unified Parkinson’s Disease Rating Scale (UPDRS) part III, UPDRS part II (UPDRS-II) item 14, and the FOG questionnaire (FOG-Q). Postoperatively, video-based FOG analysis and the axial score were evaluated under 4 conditions (off-medication/off-stimulation, off-medication/on-stimulation, on-medication/off-stimulation, and on-medication/on-stimulation), and UPDRS-II item 14 and the FOG-Q score were evaluated under 2 conditions (off-medication/on-stimulation and on-medication/on-stimulation).RESULTSDuring the off-medication state, the on-stimulation condition improved FOG outcomes, except for video-based FOG severity, up to the last follow-up compared with the baseline. Video-based FOG outcomes and the axial score during the off-medication state were improved with the on-stimulation condition up to the last follow-up compared with the off-stimulation condition. During the on-medication state, the on-stimulation condition did not improve any FOG outcome compared with the baseline; however, it improved video-based FOG outcomes up to the 2-year follow-up and the axial score up to the last follow-up compared with the off-stimulation condition.CONCLUSIONSOur findings suggest that STN DBS has a long-term effect on FOG in the off-medication state. However, STN DBS did not show a long-term effect on FOG in the on-medication state, although it had a short-term effect until the 2-year follow-up.


2021 ◽  
pp. 1-21
Author(s):  
Diego Santos García ◽  
Hector Canfield ◽  
Teresa de Deus Fonticoba ◽  
Carlos Cores Bartolomé ◽  
Lucía Naya Ríos ◽  
...  

Background: Motor phenotype (MP) can be associated with a different prognosis in Parkinson’s disease (PD), but it is not fixed and can change over time. Objective: Our aim was to analyze how the MP changed over time and to identify factors associated with the changes in PD patients from a multicenter Spanish PD cohort. Methods: PD patients who were recruited from January-2016 to November-2017 (baseline visit; V0) and evaluated again at a 2-year±30 days follow-up (V2) from 35 centers of Spain from the COPPADIS cohort, were included in this study.MP was calculated at both visits based on Jankovic classification in TD (tremor dominant), IND (indeterminate), or PIGD (postural instability and gait difficulty). Sociodemographic and clinical data were collected, including serum biomarkers. Results: Five hundred eleven patients (62.57±8.59 years old; 59.2%males) were included in the study. At V0, MP was: 47.4%(242/511) TD; 36.6%(187/511) PIGD; 16%(82/511) IND. Up to 38%(194/511) of the patients changed their phenotype from V0 to V2, being the most frequent from TD to IND (8.4%) and from TD to PIGD (6.7%). A worse cognitive status (OR = 0.966) and less autonomy for activities of daily living (OR  =  0.937) at V0 and a greater increase in the globalNMS burden (OR  =  1.011) from V0 to V2 were associated with changing from TD to another phenotype after 2-year follow-up. Conclusion: The MP in PD can change over time. With disease progression, the percentage of cases with non-tremoric MP increases. PD patients who changed from TD to postural instability and gait difficulty increased NMS burden significantly.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stephano J. Chang ◽  
Iahn Cajigas ◽  
James D. Guest ◽  
Brian R. Noga ◽  
Eva Widerström-Noga ◽  
...  

Abstract Background Freezing of gait (FOG) is a particularly debilitating motor deficit seen in a subset of Parkinson’s disease (PD) patients that is poorly responsive to standard levodopa therapy or deep brain stimulation (DBS) of established PD targets such as the subthalamic nucleus and the globus pallidus interna. The proposal of a DBS target in the midbrain, known as the pedunculopontine nucleus (PPN) to address FOG, was based on its observed pathology in PD and its hypothesized involvement in locomotor control as a part of the mesencephalic locomotor region, a functionally defined area of the midbrain that elicits locomotion in both intact animals and decerebrate animal preparations with electrical stimulation. Initial reports of PPN DBS were met with much enthusiasm; however, subsequent studies produced mixed results, and recent meta-analysis results have been far less convincing than initially expected. A closer review of the extensive mesencephalic locomotor region (MLR) preclinical literature, including recent optogenetics studies, strongly suggests that the closely related cuneiform nucleus (CnF), just dorsal to the PPN, may be a superior target to promote gait initiation. Methods We will conduct a prospective, open-label, single-arm pilot study to assess safety and feasibility of CnF DBS in PD patients with levodopa-refractory FOG. Four patients will receive CnF DBS and have gait assessments with and without DBS during a 6-month follow-up. Discussion This paper presents the study design and rationale for a pilot study investigating a novel DBS target for gait dysfunction, including targeting considerations. This pilot study is intended to support future larger scale clinical trials investigating this target. Trial registration ClinicalTrials.gov identifier: NCT04218526 (registered January 6, 2020)


Sign in / Sign up

Export Citation Format

Share Document