scholarly journals Anti-inflammatories in Alzheimer’s disease—potential therapy or spurious correlate?

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Jack Rivers-Auty ◽  
Alison E Mather ◽  
Ruth Peters ◽  
Catherine B Lawrence ◽  
David Brough

Abstract Epidemiological evidence suggests non-steroidal anti-inflammatory drugs reduce the risk of Alzheimer’s disease. However, clinical trials have found no evidence of non-steroidal anti-inflammatory drug efficacy. This incongruence may be due to the wrong non-steroidal anti-inflammatory drugs being tested in robust clinical trials or the epidemiological findings being caused by confounding factors. Therefore, this study used logistic regression and the innovative approach of negative binomial generalized linear mixed modelling to investigate both prevalence and cognitive decline, respectively, in the Alzheimer’s Disease Neuroimaging dataset for each commonly used non-steroidal anti-inflammatory drug and paracetamol. Use of most non-steroidal anti-inflammatories was associated with reduced Alzheimer’s disease prevalence yet no effect on cognitive decline was observed. Paracetamol had a similar effect on prevalence to these non-steroidal anti-inflammatory drugs suggesting this association is independent of the anti-inflammatory effects and that previous results may be due to spurious associations. Interestingly, diclofenac use was significantly associated with both reduce incidence and slower cognitive decline warranting further research into the potential therapeutic effects of diclofenac in Alzheimer’s disease.

2020 ◽  
Vol 21 (10) ◽  
pp. 3678 ◽  
Author(s):  
Sujin Kim ◽  
Yunkwon Nam ◽  
Chanyang Kim ◽  
Hyewon Lee ◽  
Seojin Hong ◽  
...  

Alzheimer’s disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-β (Aβ) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of non-pharmacological interventions to prevent or treat AD has gained attention. Low-dose ionizing radiation (LDIR) is a non-pharmacological intervention which is currently being evaluated in clinical trials for AD patients. However, the mechanisms underlying the therapeutic effects of LDIR therapy have not yet been established. In this study, we examined the effect of LDIR on Aβ accumulation and Aβ-mediated pathology. To investigate the short-term effects of low–moderate dose ionizing radiation (LMDIR), a total of 9 Gy (1.8 Gy per fraction for five times) were radiated to 4-month-old 5XFAD mice, an Aβ-overexpressing transgenic mouse model of AD, and then sacrificed at 4 days after last exposure to LMDIR. Comparing sham-exposed and LMDIR-exposed 5XFAD mice indicated that short-term exposure to LMDIR did not affect Aβ accumulation in the brain, but significantly ameliorated synaptic degeneration, neuronal loss, and neuroinflammation in the hippocampal formation and cerebral cortex. In addition, a direct neuroprotective effect was confirmed in SH-SY5Y neuronal cells treated with Aβ1–42 (2 μM) after single irradiation (1 Gy). In BV-2 microglial cells exposed to Aβ and/or LMDIR, LMDIR therapy significantly inhibited the production of pro-inflammatory molecules and activation of the nuclear factor-kappa B (NF-κB) pathway. These results indicate that LMDIR directly ameliorated neurodegeneration and neuroinflammation in vivo and in vitro. Collectively, our findings suggest that the therapeutic benefits of LMDIR in AD may be mediated by its neuroprotective and anti-inflammatory effects.


2021 ◽  
pp. 1-16
Author(s):  
Staley A. Brod

Systemic inflammation is an organism’s response to an assault by the non-self. However, that inflammation may predispose humans to illnesses targeted to organs, including Alzheimer’s disease (AD). Lesions in AD have pro-inflammatory cytokines and activated microglial/monocyte/macrophage cells. Up to this point, clinical trials using anti-amyloid monoclonal antibodies have not shown success. Maybe it is time to look elsewhere by combating inflammation. Neuroinflammation with CNS cellular activation and excessive expression of immune cytokines is suspected as the “principal culprit” in the higher risk for sporadic AD. Microglia, the resident immune cell of the CNS, perivascular myeloid cells, and activated macrophages produce IL-1, IL-6 at higher levels in patients with AD. Anti-inflammatory measures that target cellular/cytokine-mediated damage provide a rational therapeutic strategy. We propose a clinical trial using oral type 1 IFNs to act as such an agent; one that decreases IL-1 and IL-6 secretion by activating lamina propria lymphocytes in the gut associated lymphoid tissue with subsequent migration to the brain undergoing inflammatory responses. A clinical trial would be double-blind, parallel 1-year clinical trial randomized 1 : 1 oral active type 1 IFN versus best medical therapy to determine whether ingested type I IFN would decrease the rate of cognitive decline in mild cognitive impairment or mild AD. Using cognitive psychometrics, imaging, and fluid biomarkers (MxA for effective type I IFN activity beyond the gut), we can determine if oral type I IFN can prevent cognitive decline in AD.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sara Mahdiabadi ◽  
Sara Momtazmanesh ◽  
George Perry ◽  
Nima Rezaei

Abstract Alzheimer’s disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.


2010 ◽  
Vol 3 (6) ◽  
pp. 1812-1841 ◽  
Author(s):  
Amy H. Moore ◽  
Matthew J. Bigbee ◽  
Grace E. Boynton ◽  
Colin M. Wakeham ◽  
Hilary M. Rosenheim ◽  
...  

2002 ◽  
Vol 21 (2) ◽  
pp. 81-86 ◽  
Author(s):  
C. Wolfson ◽  
A. Perrault ◽  
Y. Moride ◽  
J.M. Esdaile ◽  
L. Abenhaim ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Zhenyan Song ◽  
Fang Yin ◽  
Biao Xiang ◽  
Bin Lan ◽  
Shaowu Cheng

In traditional Chinese medicine (TCM), Acori Tatarinowii Rhizoma (ATR) is widely used to treat memory and cognition dysfunction. This study aimed to confirm evidence regarding the potential therapeutic effect of ATR on Alzheimer’s disease (AD) using a system network level based in silico approach. Study results showed that the compounds in ATR are highly connected to AD-related signaling pathways, biological processes, and organs. These findings were confirmed by compound-target network, target-organ location network, gene ontology analysis, and KEGG pathway enrichment analysis. Most compounds in ATR have been reported to have antifibrillar amyloid plaques, anti-tau phosphorylation, and anti-inflammatory effects. Our results indicated that compounds in ATR interact with multiple targets in a synergetic way. Furthermore, the mRNA expressions of genes targeted by ATR are elevated significantly in heart, brain, and liver. Our results suggest that the anti-inflammatory and immune system enhancing effects of ATR might contribute to its major therapeutic effects on Alzheimer’s disease.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Fan’ge Kong ◽  
Xue Jiang ◽  
Ruochen Wang ◽  
Siyu Zhai ◽  
Yizhi Zhang ◽  
...  

Abstract Background Neuroinflammation is a principal element in Alzheimer’s disease (AD) pathogenesis, so anti-inflammation may be a promising therapeutic strategy. Forsythoside B (FTS•B), a phenylethanoid glycoside isolated from Forsythiae fructus, has been reported to exert anti-inflammatory effects. However, no studies have reported whether the anti-inflammatory properties of FTS•B have a neuroprotective effect in AD. In the present study, these effects of FTS•B were investigated using amyloid precursor protein/presenilin 1 (APP/PS1) mice, BV-2 cells, and HT22 cells. Methods APP/PS1 mice were administered FTS•B intragastrically for 36 days. Behavioral tests were then carried out to examine cognitive functions, including the Morris water maze, Y maze, and open field experiment. Immunohistochemistry was used to analyze the deposition of amyloid-beta (Aβ), the phosphorylation of tau protein, and the levels of 4-hydroxynonenal, glial fibrillary acidic protein, and ionized calcium-binding adapter molecule 1 in the hippocampus. Proteins that showed marked changes in levels related to neuroinflammation were identified using proteomics and verified using enzyme-linked immunosorbent assay and western blot. BV-2 and HT22 cells were also used to confirm the anti-neuroinflammatory effects of FTS•B. Results In APP/PS1 mice, FTS•B counteracted cognitive decline, ameliorated the deposition of Aβ and the phosphorylation of tau protein, and attenuated the activation of microglia and astrocytes in the cortex and hippocampus. FTS•B affected vital signaling, particularly by decreasing the activation of JNK-interacting protein 3/C-Jun NH2-terminal kinase and suppressing WD-repeat and FYVE-domain-containing protein 1/toll-like receptor 3 (WDFY1/TLR3), further suppressing the activation of nuclear factor-κB (NF-κB) signaling. In BV-2 and HT22 cells, FTS•B prevented lipopolysaccharide-induced neuroinflammation and reduced the microglia-mediated neurotoxicity. Conclusions FTS•B effectively counteracted cognitive decline by regulating neuroinflammation via NF-κB signaling in APP/PS1 mice, providing preliminary experimental evidence that FTS•B is a promising therapeutic agent in AD treatment.


Sign in / Sign up

Export Citation Format

Share Document