scholarly journals Diet-dependent gut microbiota impacts on adult neurogenesis through mitochondrial stress modulation

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Maria F Ribeiro ◽  
André A Santos ◽  
Marta B Afonso ◽  
Pedro M Rodrigues ◽  
Sónia Sá Santos ◽  
...  

Abstract The influence of dietary factors on brain health and mental function is becoming increasingly recognized. Similarly, mounting evidence supports a role for gut microbiota in modulating central nervous system function and behaviour. Still, the molecular mechanisms responsible for the impact of diet and associated microbiome in adult neurodegeneration are still largely unclear. In this study, we aimed to investigate whether and how changes in diet-associated microbiome and its metabolites impact on adult neurogenesis. Mice were fed a high-fat, choline-deficient diet, developing obesity and several features of the metabolic syndrome, including non-alcoholic steatohepatitis. Strikingly, our results showed, for the first time, that animals fed with this specific diet display premature increased neurogenesis, possibly exhausting the available neural stem cell pool for long-term neurogenesis processes. The high-fat, choline-deficient diet further induced neuroinflammation, oxidative stress, synaptic loss and cell death in different regions of the brain. Notably, this diet-favoured gut dysbiosis in the small intestine and cecum, up-regulating metabolic pathways of short-chain fatty acids, such as propionate and butyrate and significantly increasing propionate levels in the liver. By dissecting the effect of these two specific short-chain fatty acids in vitro, we were able to show that propionate and butyrate enhance mitochondrial biogenesis and promote early neurogenic differentiation of neural stem cells through reactive oxygen species- and extracellular signal-regulated kinases 1/2-dependent mechanism. More importantly, neurogenic niches of high-fat, choline-deficient-fed mice showed increased expression of mitochondrial biogenesis markers, and decreased mitochondrial reactive oxygen species scavengers, corroborating the involvement of this mitochondrial stress-dependent pathway in mediating changes of adult neurogenesis by diet. Altogether, our results highlight a mitochondria-dependent pathway as a novel mediator of the gut microbiota–brain axis upon dietary influences.

2018 ◽  
Vol 84 (21) ◽  
Author(s):  
Richard Agans ◽  
Alex Gordon ◽  
Denise Lynette Kramer ◽  
Sergio Perez-Burillo ◽  
José A. Rufián-Henares ◽  
...  

ABSTRACTWhile a substantial amount of dietary fats escape absorption in the human small intestine and reach the colon, the ability of resident microbiota to utilize these dietary fats for growth has not been investigated in detail. In this study, we used anin vitromultivessel simulator system of the human colon to reveal that the human gut microbiota is able to utilize typically consumed dietary fatty acids to sustain growth. Gut microbiota adapted quickly to a macronutrient switch from a balanced Western diet-type medium to its variant lacking carbohydrates and proteins. We defined specific genera that increased in their abundances on the fats-only medium, includingAlistipes,Bilophila, and several genera of the classGammaproteobacteria. In contrast, the abundances of well-known glycan and protein degraders, includingBacteroides,Clostridium, andRoseburiaspp., were reduced under such conditions. The predicted prevalences of microbial genes coding for fatty acid degradation enzymes and anaerobic respiratory reductases were significantly increased in the fats-only environment, whereas the abundance of glycan degradation genes was diminished. These changes also resulted in lower microbial production of short-chain fatty acids and antioxidants. Our findings provide justification for the previously observed alterations in gut microbiota observed in human and animal studies of high-fat diets.IMPORTANCEIncreased intake of fats in many developed countries has raised awareness of potentially harmful and beneficial effects of high fat consumption on human health. Some dietary fats escape digestion in the small intestine and reach the colon where they can be metabolized by gut microbiota. We show that human gut microbes are able to maintain a complex community when supplied with dietary fatty acids as the only nutrient and carbon sources. Such fatty acid-based growth leads to lower production of short-chain fatty acids and antioxidants by community members, which potentially have negative health consequences on the host.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 456
Author(s):  
Mihai V. Curtasu ◽  
Valeria Tafintseva ◽  
Zachary A. Bendiks ◽  
Maria L. Marco ◽  
Achim Kohler ◽  
...  

The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize. Both diets were fed ad libitum. Non-targeted metabolomics was used to explore plasma, urine, and feces samples over five months. Plasma and fecal short-chain fatty acids were targeted and quantified. Fecal microbiota was analyzed using genomic sequencing. Data analysis was performed using sparse multi-block partial least squares regression. The LR diet increased concentrations of fecal and plasma total short-chain fatty acids, primarily acetate, and there was a higher relative abundance of microbiota associated with acetate production such as Bacteroidetes and Ruminococcus. A higher proportion of Firmicutes was measured with the HR diet, together with a lower alpha diversity compared to the LR diet. Irrespective of diet, the ad libitum exposure to the high-energy diets was accompanied by well-known biomarkers associated with obesity and diabetes, particularly branched-chain amino acids, keto acids, and other catabolism metabolites.


2019 ◽  
Vol 84 (12) ◽  
pp. 3833-3842 ◽  
Author(s):  
Yiming Zhou ◽  
Qingyi Jiang ◽  
Shen Zhao ◽  
Beibei Yan ◽  
Xiaoli Zhou

2020 ◽  
Vol 15 (1) ◽  
pp. 52-56
Author(s):  
Sri Winarti ◽  
Agung Pasetyo

The consumption of prebiotics is known to affect the balance of gut microbiota. The purpose of this study was to explore how a galactomannan-rich effervescent drink can affect the population of Lactobacillus, Bifidobacterium, E. coli, and the concentration of short-chain fatty acids in the cecum of rats. Twenty-eight male Wistar rats (aged 2 months) were divided equally into 7 groups and treated orally each day for 15 days with 2 mL effervescent drinks with increasing levels of prebiotic galactomannan. The dosage of 500 mg galactomannan increased the growth of Lactobacillus spp. and Bifidobacterium spp. with inhibition of the growth of E.coli with increased formation of short-chain fatty acids such as acetate, propionate, and butyrate in the cecum of rats.


2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


2020 ◽  
Vol 70 ◽  
pp. 20-22 ◽  
Author(s):  
Daniel Grün ◽  
Valerie C. Zimmer ◽  
Jil Kauffmann ◽  
Jörg Spiegel ◽  
Ulrich Dillmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document