The genotoxic carcinogen chromium(VI) alters the metal-inducible expression but not the basal expression of the metailothionein gene in vivo

1994 ◽  
Vol 15 (5) ◽  
pp. 1089-1092 ◽  
Author(s):  
Joy A. Alcedo ◽  
Manoj Misra ◽  
Joshua W. Hamilton ◽  
Karen E. Wetterhahn
1992 ◽  
Vol 12 (9) ◽  
pp. 4209-4214
Author(s):  
A Gualberto ◽  
D LePage ◽  
G Pons ◽  
S L Mader ◽  
K Park ◽  
...  

The rapid, transient induction of the c-fos proto-oncogene by serum growth factors is mediated by the serum response element (SRE). The SRE shares homology with the muscle regulatory element (MRE) of the skeletal alpha-actin promoter. It is not known how these elements respond to proliferative and cell-type-specific signals, but the response appears to involve the binding of the serum response factor (SRF) and other proteins. Here, we report that YY1, a multifunctional transcription factor, binds to SRE and MRE sequences in vitro. The methylation interference footprint of YY1 overlaps with that of the SRF, and YY1 competes with the SRF for binding to these DNA elements. Overexpression of YY1 repressed serum-inducible and basal expression from the c-fos promoter and repressed basal expression from the skeletal alpha-actin promoter. YY1 also repressed expression from the individual SRE and MRE sequences upstream from a TATA element. Unlike that of YY1, SRF overexpression alone did not influence the transcriptional activity of the target sequence, but SRF overexpression could reverse YY1-mediated trans repression. These data suggest that YY1 and the SRF have antagonistic functions in vivo.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1081-1086 ◽  
Author(s):  
A.B. Glick ◽  
B.K. McCune ◽  
N. Abdulkarem ◽  
K.C. Flanders ◽  
J.A. Lumadue ◽  
...  

We report the results of a histochemical study, using polyclonal antipeptide antibodies to the different TGF beta isoforms, which demonstrates that retinoic acid regulates the expression of TGF beta 2 in the vitamin A-deficient rat. Basal expression of TGF beta 2 diminished under conditions of vitamin A deficiency. Treatment with retinoic acid caused a rapid and transient induction of TGF beta 2 and TGF beta 3 in the epidermis, tracheobronchial and alveolar epithelium, and intestinal mucosa. Induction of TGF beta 1 expression was also observed in the epidermis. In contrast to these epithelia, expression of the three TGF beta isoforms increased in vaginal epithelium during vitamin A deficiency, and decreased following systemic administration of retinoic acid. Our results show for the first time the widespread regulation of TGF beta expression by retinoic acid in vivo, and suggest a possible mechanism by which retinoics regulate the functions of both normal and pre-neoplastic epithelia.


1992 ◽  
Vol 262 (2) ◽  
pp. H590-H597 ◽  
Author(s):  
R. J. Robbins ◽  
J. L. Swain

Protooncogenes such as c-myc have been implicated in the transduction of growth signals in the cardiac myocyte. We examined whether increases in c-myc expression occur in murine heart in vivo as a generalized response to the pharmacological stimulation of myocyte growth. Both triiodothyronine (T3) and the beta-adrenergic agonist isoproterenol were demonstrated to induce a rapid and transient increase in cardiac c-myc mRNA abundance, which preceded an increase in cardiac mass. We then examined whether myocyte growth could be modulated by selectively altering cardiac c-myc expression. The model system used was a strain of transgenic mice exhibiting a 20-fold increase in cardiac c-myc expression. Although in nontransgenic mice the administration of T3 and isoproterenol resulted in similar increases in cardiac mass, in transgenic mice the degree of myocardial growth induced with T3 was significantly greater than that induced with isoproterenol (P less than 0.001). This study demonstrates that increasing the basal expression of c-myc in cardiac myocytes alters the growth response of the heart in vivo to certain hypertrophic stimuli and implicates the c-myc protooncogene in the transduction of selective hypertrophic growth signals in differentiated cardiac myocytes.


Sign in / Sign up

Export Citation Format

Share Document