In vivo regulation of tissue-specific and LPS-inducible expression of the Drosophila Cecropin genes

1998 ◽  
Vol 7 (1) ◽  
pp. 51-62 ◽  
Author(s):  
E. Roos ◽  
G. Bjorklund ◽  
Y. Engstrom
1993 ◽  
Vol 177 (6) ◽  
pp. 1663-1674 ◽  
Author(s):  
M D Todd ◽  
M J Grusby ◽  
J A Lederer ◽  
E Lacy ◽  
A H Lichtman ◽  
...  

Activation of T helper cell 1 (Th1) and Th2 results in transcription of the interleukin 2 (IL-2) and IL-4 cytokine genes, respectively. Whereas many of the regulatory elements and factors responsible for IL-2 transcription in T cells are well defined, little is known about parallel mechanisms that drive transcription of the IL-4 gene. Here we have analyzed the murine IL-4 promoter, both in vivo and in a Th2 clone. 3 kb of IL-4 upstream sequence is shown to be sufficient to achieve tissue-specific and inducible expression of a thymidine kinase reporter gene in vivo in a manner that mirrors the expression of endogenous IL-4. Tissue-specific and inducible expression is also demonstrated in a Th2 clone, but not in a B cell line. Deletional and mutational analysis of the IL-4 promoter demonstrated that sequences from -100 to -28 were necessary for a transcriptional response to Concanavalin A or anti-CD3 monoclonal antibody. An overlapping, yet smaller region, spanning the sequences from -60 to -28 bp was shown to be required for the response to ionomycin. Mutation of an 8-bp region from -43 to -35 of the IL-4 promoter completely abrogated IL-4 gene transcription in response to all stimuli tested. In addition, our results show that the effects of the immunosuppressive agent Cyclosporin A map to the same DNA sequences as the positive control elements. These results identify DNA sequences that are functionally important for the control of IL-4 gene transcription both in vivo and in vitro. Although these sequences are highly conserved in the human and murine IL-4 genes, they are largely not present in the IL-2 enhancer complex. Thus, cytokine-specific cis-acting elements may be one mechanism by which these two cytokine genes are differentially regulated.


Genetics ◽  
2021 ◽  
Author(s):  
Christopher A Piggott ◽  
Zilu Wu ◽  
Stephen Nurrish ◽  
Suhong Xu ◽  
Joshua M Kaplan ◽  
...  

Abstract The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole C. elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 co-localizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68/RyR calcium channel, and is required for animal movement. In neurons, JPH-1 co-localizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell non-autonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and unc-68/RyR for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68/RyR is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 855
Author(s):  
Paola Serrano Martinez ◽  
Lorena Giuranno ◽  
Marc Vooijs ◽  
Robert P. Coppes

Radiotherapy is involved in the treatment of many cancers, but damage induced to the surrounding normal tissue is often inevitable. Evidence suggests that the maintenance of homeostasis and regeneration of the normal tissue is driven by specific adult tissue stem/progenitor cells. These tasks involve the input from several signaling pathways. Irradiation also targets these stem/progenitor cells, triggering a cellular response aimed at achieving tissue regeneration. Here we discuss the currently used in vitro and in vivo models and the involved specific tissue stem/progenitor cell signaling pathways to study the response to irradiation. The combination of the use of complex in vitro models that offer high in vivo resemblance and lineage tracing models, which address organ complexity constitute potential tools for the study of the stem/progenitor cellular response post-irradiation. The Notch, Wnt, Hippo, Hedgehog, and autophagy signaling pathways have been found as crucial for driving stem/progenitor radiation-induced tissue regeneration. We review how these signaling pathways drive the response of solid tissue-specific stem/progenitor cells to radiotherapy and the used models to address this.


2002 ◽  
Vol 76 (24) ◽  
pp. 12783-12791 ◽  
Author(s):  
Christopher R. Logg ◽  
Aki Logg ◽  
Robert J. Matusik ◽  
Bernard H. Bochner ◽  
Noriyuki Kasahara

ABSTRACT The inability of replication-defective viral vectors to efficiently transduce tumor cells in vivo has prevented the successful application of such vectors in gene therapy of cancer. To address the need for more efficient gene delivery systems, we have developed replication-competent retroviral (RCR) vectors based on murine leukemia virus (MLV). We have previously shown that such vectors are capable of transducing solid tumors in vivo with very high efficiency. While the natural requirement of MLV infection for cell division imparts a certain degree of specificity for tumor cells, additional means for confining RCR vector replication to tumor cells are desirable. Here, we investigated the parameters critical for successful tissue-specific transcriptional control of RCR vector replication by replacing various lengths of the MLV enhancer/promoter with sequences derived either from the highly prostate-specific probasin (PB) promoter or from a more potent synthetic variant of the PB promoter. We assessed the transcriptional specificity of the resulting hybrid long terminal repeats (LTRs) and the cell type specificity and efficiency of replication of vectors containing these LTRs. Incorporation of PB promoter sequences effectively restricted transcription from the LTR to prostate-derived cells and imparted prostate-specific RCR vector replication but required the stronger synthetic promoter and retention of native MLV sequences in the vicinity of the TATA box for optimal replicative efficiency and specificity. Our results have thus identified promoter strength and positioning within the LTR as important determinants for achieving both high transduction efficiency and strict cell type specificity in transcriptionally targeted RCR vectors.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 317-330 ◽  
Author(s):  
O. Bossinger ◽  
E. Schierenberg

The pattern of autofluorescence in the two free-living namatodes Rhabditis dolichura and Caenorhabditis compared. In C. elegans, during later embryogenesis cells develop a typical bluish autofluorescence as illumination, while in Rh. dolichura a strong already present in the unfertilized egg. Using a new,


Author(s):  
Li Lin ◽  
Wei Xu ◽  
Yongqing Li ◽  
Ping Zhu ◽  
Wuzhou Yuan ◽  
...  

Wnt/β-catenin signalling plays a key role in pathological cardiac remodelling in adults. The identification of a tissue-specific Wnt/β-catenin interaction factor may realise a tissue-specific clinical targeting strategy. Drosophila Pygo codes for the core interaction factor of Wnt/β-catenin. Two Pygo homologs, Pygo1 and Pygo2, have been identified in mammals. Different from the ubiquitous expression profile of Pygo2, Pygo1is enriched in cardiac tissue. However, the role of Pygo1 in mammalian cardiac disease remains unelucidated. Here, we found that Pygo1 was upregulated in human cardiac tissues with pathological hypertrophy. Cardiac-specific overexpression of Pygo1 in mice spontaneously led to cardiac hypertrophy accompanied by declined cardiac function, increased heart weight/body weight and heart weight/tibial length ratios and increased cell size. The canonical β-catenin/T-cell transcription factor 4 complex was abundant in Pygo1-overexpressingtransgenic(Pygo1-TG) cardiac tissue,and the downstream genes of Wnt signaling, i.e., Axin2, Ephb3, and C-myc, were upregulated. A tail vein injection of β-catenin inhibitor effectively rescued the phenotype of cardiac failure and pathological myocardial remodelling in Pygo1-TG mice. Furthermore, in vivo downregulated pygo1 during cardiac hypertrophic condition antagonized agonist-induced cardiac hypertrophy. Therefore, our study is the first to present in vivo evidence demonstrating that Pygo1 regulates pathological cardiac hypertrophy in a canonical Wnt/β-catenin-dependent manner, which may provide new clues for a tissue-specific clinical treatment targeting this pathway.


Sign in / Sign up

Export Citation Format

Share Document