scholarly journals The Parahippocampal Cortex and its Functional Connection with the Hippocampus are Critical for Nonnavigational Spatial Memory in Macaques

2020 ◽  
Author(s):  
Elyssa M LaFlamme ◽  
Hannah F Waguespack ◽  
Patrick A Forcelli ◽  
Ludise Malkova

Abstract The Hamilton Search Task (HST) is a test of nonnavigational spatial memory that is dependent on the hippocampus. The parahippocampal cortex (PHC) is a major route for spatial information to reach the hippocampus, but the extent to which the PHC and hippocampus function independently of one another in the context of nonnavigational spatial memory is unclear. Here, we tested the hypotheses that (1) bilateral pharmacological inactivation of the PHC would impair HST performance, and (2) that functional disconnection of the PHC and hippocampus by contralateral (crossed) inactivation would likewise impair performance. Transient inactivation of the PHC impaired HST performance most robustly with 30 s intertrial delays, but not when color cues were introduced. Functional disconnection of the PHC and hippocampus, but not separate unilateral inactivation of either region, also selectively impaired long-term spatial memory. These findings indicate a critical role for the PHC and its interactions with the hippocampus in nonnavigational spatial memory.

2020 ◽  
Author(s):  
Shao-Fang Wang ◽  
Valerie A. Carr ◽  
Serra E. Favila ◽  
Jeremy N. Bailenson ◽  
Thackery I. Brown ◽  
...  

AbstractThe hippocampus (HC) and surrounding medial temporal lobe (MTL) cortical regions play a critical role in spatial navigation and episodic memory. However, it remains unclear how the interaction between the HC’s conjunctive coding and mnemonic differentiation contributes to neural representations of spatial environments. Multivariate functional magnetic resonance imaging (fMRI) analyses enable examination of how human HC and MTL cortical regions encode multidimensional spatial information to support memory-guided navigation. We combined high-resolution fMRI with a virtual navigation paradigm in which participants relied on memory of the environment to navigate to goal locations in two different virtual rooms. Within each room, participants were cued to navigate to four learned locations, each associated with one of two reward values. Pattern similarity analysis revealed that when participants successfully arrived at goal locations, activity patterns in HC and parahippocampal cortex (PHC) represented room-goal location conjunctions and activity patterns in HC subfields represented room-reward-location conjunctions. These results add to an emerging literature revealing hippocampal conjunctive representations during goal-directed behavior.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
G. Torromino ◽  
L. Autore ◽  
V. Khalil ◽  
V. Mastrorilli ◽  
M. Griguoli ◽  
...  

AbstractThe hippocampal formation is considered essential for spatial navigation. In particular, subicular projections have been suggested to carry spatial information from the hippocampus to the ventral striatum. However, possible cross-structural communication between these two brain regions in memory formation has thus far been unknown. By selectively silencing the subiculum–ventral striatum pathway we found that its activity after learning is crucial for spatial memory consolidation and learning-induced plasticity. These results provide new insight into the neural circuits underlying memory consolidation and establish a critical role for off-line cross-regional communication between hippocampus and ventral striatum to promote the storage of complex information.


2019 ◽  
Author(s):  
V Marija Čolić ◽  
Uroš Konstantinović ◽  
Jovana Bjekić ◽  
R Saša Filipović

AbstractSpatial memory relies on efficient encoding, storage and retrieval of spatial information, which enables us to remember paths or locations of objects in everyday life. Moreover, this type of memory has been shown to decline with age and various neurodegenerative disorders. Parietal cortex has been shown to play an important role in the formation of short-term representations of spatial information. The aim of the current study was to test the possibility of immediate and long-term spatial memory enhancement, by increasing excitability of parietal posterior cortex. We used transcranial direct current stimulation (tDCS) over posterior parietal cortex in a placebo-controlled cross-over study. Participants received anodal (1.5 mA) or sham tDCS stimulation over P4 site (10-20 EEG system) for 20 minutes in two separate sessions. Immediately after stimulation, participants completed a spatial maze task, which consisted of learning block, 2D recall, and 3D recall. Spatial memory performance was tested 24 hours and 7 days after stimulation, to assess potential long-term effects. We found no significant effects of anodal stimulation on spatial memory performance either on immediate or delayed recall. This was the case with both, 2D and 3D spatial memory recall. Our results are in line with some studies that suggest that single brain stimulation sessions do not always produce effects on cognitive functions.


2010 ◽  
Vol 22 (12) ◽  
pp. 2823-2835 ◽  
Author(s):  
Andy C. H. Lee ◽  
Sarah R. Rudebeck

There has been considerable debate surrounding the functions of the medial temporal lobe (MTL). Although this region has been traditionally thought to subserve long-term declarative memory only, recent evidence suggests a role in short-term working memory and even higher order perception. To investigate this issue, functional neuroimaging was used to investigate the involvement of the MTL in spatial scene perception and working memory. Healthy participants were scanned during a working memory task incorporating two factors of working memory (high vs. low demand) and spatial processing (complex vs. simple). It was found that an increase in spatial processing demand produced significantly greater activity in the posterior hippocampus and parahippocampal cortex irrespective of whether working memory demand was high or low. In contrast, there was no region within the MTL that increased significantly in activity during both the complex and the simple spatial processing conditions when working memory demand was increased. There was, however, a significant interaction effect between spatial processing and working memory in the right posterior hippocampus and parahippocampal cortex bilaterally: An increase in working memory demand produced a significant increase in activity in these areas during the complex, but not simple, spatial processing conditions. These findings suggest that although there may be a role for the MTL in both stimulus processing and working memory, increasing the latter does not necessarily increase posterior MTL involvement. We suggest that these structures may play a critical role in processing complex spatial representations, which, in turn, may form the basis of short- and long-term mnemonic processes.


2021 ◽  
pp. 108602662110316
Author(s):  
Tiziana Russo-Spena ◽  
Nadia Di Paola ◽  
Aidan O’Driscoll

An effective climate change action involves the critical role that companies must play in assuring the long-term human and social well-being of future generations. In our study, we offer a more holistic, inclusive, both–and approach to the challenge of environmental innovation (EI) that uses a novel methodology to identify relevant configurations for firms engaging in a superior EI strategy. A conceptual framework is proposed that identifies six sets of driving characteristics of EI and two sets of beneficial outcomes, all inherently tensional. Our analysis utilizes a complementary rather than an oppositional point of view. A data set of 65 companies in the ICT value chain is analyzed via fuzzy-set comparative analysis (fsQCA) and a post-QCA procedure. The results reveal that achieving a superior EI strategy is possible in several scenarios. Specifically, after close examination, two main configuration groups emerge, referred to as technological environmental innovators and organizational environmental innovators.


2021 ◽  
Vol 226 (4) ◽  
pp. 989-1006
Author(s):  
Ilenia Salsano ◽  
Valerio Santangelo ◽  
Emiliano Macaluso

AbstractPrevious studies demonstrated that long-term memory related to object-position in natural scenes guides visuo-spatial attention during subsequent search. Memory-guided attention has been associated with the activation of memory regions (the medial-temporal cortex) and with the fronto-parietal attention network. Notably, these circuits represent external locations with different frames of reference: egocentric (i.e., eyes/head-centered) in the dorsal attention network vs. allocentric (i.e., world/scene-centered) in the medial temporal cortex. Here we used behavioral measures and fMRI to assess the contribution of egocentric and allocentric spatial information during memory-guided attention. At encoding, participants were presented with real-world scenes and asked to search for and memorize the location of a high-contrast target superimposed in half of the scenes. At retrieval, participants viewed again the same scenes, now all including a low-contrast target. In scenes that included the target at encoding, the target was presented at the same scene-location. Critically, scenes were now shown either from the same or different viewpoint compared with encoding. This resulted in a memory-by-view design (target seen/unseen x same/different view), which allowed us teasing apart the role of allocentric vs. egocentric signals during memory-guided attention. Retrieval-related results showed greater search-accuracy for seen than unseen targets, both in the same and different views, indicating that memory contributes to visual search notwithstanding perspective changes. This view-change independent effect was associated with the activation of the left lateral intra-parietal sulcus. Our results demonstrate that this parietal region mediates memory-guided attention by taking into account allocentric/scene-centered information about the objects' position in the external world.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2021 ◽  
Vol 179 ◽  
pp. 107406
Author(s):  
Kyrian Nicolay-Kritter ◽  
Jordan Lassalle ◽  
Jean-Louis Guillou ◽  
Nicole Mons

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Die Su ◽  
Yi Pei ◽  
Li Liu ◽  
Zhixiao Liu ◽  
Junfang Liu ◽  
...  

AbstractWearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wire TiO2/C nanofibers (TiO2 ww/CN) film is synthesized via electrospinning with selenium as a structural inducer. The interconnected carbon network and unique wire-in-wire nanostructure cannot only improve electronic conductivity and induce effective charge transports, but also bring a superior mechanic flexibility. Ultimately, TiO2 ww/CN film shows outstanding electrochemical performance as free-standing electrodes in Li/K ion batteries. It shows a discharge capacity as high as 303 mAh g−1 at 5 A g−1 after 6000 cycles in Li half-cells, and the unique structure is well-reserved after long-term cycling. Moreover, even TiO2 has a large diffusion barrier of K+, TiO2 ww/CN film demonstrates excellent performance (259 mAh g−1 at 0.05 A g−1 after 1000 cycles) in K half-cells owing to extraordinary pseudocapacitive contribution. The Li/K full cells consisted of TiO2 ww/CN film anode and LiFePO4/Perylene-3,4,9,10-tetracarboxylic dianhydride cathode possess outstanding cycling stability and demonstrate practical application from lighting at least 19 LEDs. It is, therefore, expected that this material will find broad applications in portable and wearable Li/K-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document