scholarly journals Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts

2021 ◽  
Author(s):  
Ralica Dimitrova ◽  
Sophie Arulkumaran ◽  
Olivia Carney ◽  
Andrew Chew ◽  
Shona Falconer ◽  
...  

Abstract The diverse cerebral consequences of preterm birth create significant challenges for understanding pathogenesis or predicting later outcome. Instead of focusing on describing effects common to the group, comparing individual infants against robust normative data offers a powerful alternative to study brain maturation. Here we used Gaussian process regression to create normative curves characterizing brain volumetric development in 274 term-born infants, modeling for age at scan and sex. We then compared 89 preterm infants scanned at term-equivalent age with these normative charts, relating individual deviations from typical volumetric development to perinatal risk factors and later neurocognitive scores. To test generalizability, we used a second independent dataset comprising of 253 preterm infants scanned using different acquisition parameters and scanner. We describe rapid, nonuniform brain growth during the neonatal period. In both preterm cohorts, cerebral atypicalities were widespread, often multiple, and varied highly between individuals. Deviations from normative development were associated with respiratory support, nutrition, birth weight, and later neurocognition, demonstrating their clinical relevance. Group-level understanding of the preterm brain disguises a large degree of individual differences. We provide a method and normative dataset that offer a more precise characterization of the cerebral consequences of preterm birth by profiling the individual neonatal brain.

2020 ◽  
Author(s):  
Ralica Dimitrova ◽  
Sophie Arulkumaran ◽  
Olivia Carney ◽  
Andrew Chew ◽  
Shona Falconer ◽  
...  

AbstractObjectivePreterm birth carries a significant risk for atypical development. While studies comparing group means have identified a number of early brain correlates of prematurity, they may ‘average out’ effects significant in a single individual. To understand better the cerebral consequences of prematurity, we created normative ‘growth curves’ characterizing neonatal brain development and explored the effect of preterm birth and related clinical risks in individual infants.MethodsWe used Gaussian process regression to map typical volumetric development in 275 healthy term-born infants, modelling for age at scan and sex. We compared magnetic resonance images of 89 preterm infants (born 28.7–34 weeks gestational age) scanned at term-equivalent age to these normative charts and related deviations from typical volumetric development to both perinatal clinical variables and neurocognitive scores at 18 months. We then tested if this approach can be generalized to an independent dataset of 253 preterm infants (born 28–31.6 weeks gestational age) also scanned at term-equivalent age but using different acquisition parameters and scanner, who were followed-up at 20 months.ResultsIn both preterm cohorts, cerebral atypicalities were widespread and often multiple, but varied highly between individual infants. Deviations from normative brain volumetric development were associated with perinatal factors including respiratory support, nutrition and postnatal growth, as well as with later neurocognitive outcome.ConclusionGroup-level understanding of the preterm brain might disguise a large degree of individual differences. We provide a method and a normative dataset for clinicians and researchers to profile the individual brain. This will allow a more precise characterization of the cerebral consequences of prematurity and improve the predictive power of neuroimaging.


2021 ◽  
Author(s):  
Ralica Dimitrova ◽  
Maximilian Pietsch ◽  
Judit Ciarrusta ◽  
Sean P Fitzgibbon ◽  
Logan ZJ Williams ◽  
...  

Introduction: The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. Methods: We sought to first map typical cortical micro and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n=270). Then we offer a comprehensive characterisation of the cortical consequences of preterm birth in 78 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. Results: In the term-born neonatal brain, we observed regionally specific age-associated changes in cortical morphology and microstructure, including rapid surface expansion, cortical thickness increase, reduction in cortical anisotropy and increase in neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. Conclusion: We showed that preterm birth alters cortical micro and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.


2021 ◽  
Vol 15 ◽  
Author(s):  
Marine Dubois ◽  
Antoine Legouhy ◽  
Isabelle Corouge ◽  
Olivier Commowick ◽  
Baptiste Morel ◽  
...  

ObjectivesThe severity of neurocognitive impairment increases with prematurity. However, its mechanisms remain poorly understood. Our aim was firstly to identify multiparametric magnetic resonance imaging (MRI) markers that differ according to the degree of prematurity, and secondly to evaluate the impact of clinical complications on these markers.Materials and MethodsWe prospectively enrolled preterm infants who were divided into two groups according to their degree of prematurity: extremely preterm (<28 weeks’ gestational age) and very preterm (28–32 weeks’ gestational age). They underwent a multiparametric brain MRI scan at term-equivalent age including morphological, diffusion tensor and arterial spin labeling (ASL) perfusion sequences. We quantified overall and regional volumes, diffusion parameters, and cerebral blood flow (CBF). We then compared the parameters for the two groups. We also assessed the effects of clinical data and potential MRI morphological abnormalities on those parameters.ResultsThirty-four preterm infants were included. Extremely preterm infants (n = 13) had significantly higher frontal relative volumes (p = 0.04), frontal GM relative volumes (p = 0.03), and regional CBF than very preterm infants, but they had lower brainstem and insular relative volumes (respectively p = 0.008 and 0.04). Preterm infants with WM lesions on MRI had significantly lower overall GM CBF (13.3 ± 2 ml/100 g/min versus 17.7 ± 2.5, < ml/100 g/min p = 0.03).ConclusionMagnetic resonance imaging brain scans performed at term-equivalent age in preterm infants provide quantitative imaging parameters that differ with respect to the degree of prematurity, related to brain maturation.


2013 ◽  
Vol 74 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Giancarlo Natalucci ◽  
Russia Ha-Vinh Leuchter ◽  
Hans Ulrich Bucher ◽  
Beatrice Latal ◽  
Brigitte Koller ◽  
...  

2020 ◽  
Vol 30 (9) ◽  
pp. 4800-4810 ◽  
Author(s):  
Ralica Dimitrova ◽  
Maximilian Pietsch ◽  
Daan Christiaens ◽  
Judit Ciarrusta ◽  
Thomas Wolfers ◽  
...  

Abstract Preterm-born children are at increased risk of lifelong neurodevelopmental difficulties. Group-wise analyses of magnetic resonance imaging show many differences between preterm- and term-born infants but do not reliably predict neurocognitive prognosis for individual infants. This might be due to the unrecognized heterogeneity of cerebral injury within the preterm group. This study aimed to determine whether atypical brain microstructural development following preterm birth is significantly variable between infants. Using Gaussian process regression, a technique that allows a single-individual inference, we characterized typical variation of brain microstructure using maps of fractional anisotropy and mean diffusivity in a sample of 270 term-born neonates. Then, we compared 82 preterm infants to these normative values to identify brain regions with atypical microstructure and relate observed deviations to degree of prematurity and neurocognition at 18 months. Preterm infants showed strikingly heterogeneous deviations from typical development, with little spatial overlap between infants. Greater and more extensive deviations, captured by a whole brain atypicality index, were associated with more extreme prematurity and predicted poorer cognitive and language abilities at 18 months. Brain microstructural development after preterm birth is highly variable between individual infants. This poorly understood heterogeneity likely relates to both the etiology and prognosis of brain injury.


1981 ◽  
Vol 64 (4) ◽  
pp. 875-883
Author(s):  
Shiv K Soni ◽  
Daniel Van Gelder

Abstract Due to the existence of 2 asymmetric carbon atoms in: the propoxyphene molecule, there are 4 diastereomers: alpha dextro, alpha levo, beta dextro, and beta levo. Only α-d-propoxyphene is included under the federal Controlled Substances Act. Baseline separations of propoxyphene from various incipients (aspirin, caffeine, phenacetin, and acetaminophen) present in pharmaceutical and illicit preparations, and between the alpha and beta diastereomers, were achieved by high pressure liquid chromatography. The column eluant was collected and propoxyphene was extracted. The optical isomers were differentiated and characterized by melting points and by chemical microcrystalline tests. Using hot stage thermomicroscopy, the eutectic melting points of binary isomeric mixtures of propoxyphene bases and salts were found to be depressed about 10° and 15-30°C, respectively, below the individual isomer melting points. The characteristic microcrystals formed with the alpha racemic mixtures by using a glycerin-aqueous gold chloride reagent were not produced by the beta racemic mixtures.


2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaojing Guo ◽  
Xiaoqiong Li ◽  
Tingting Qi ◽  
Zhaojun Pan ◽  
Xiaoqin Zhu ◽  
...  

Abstract Background Despite 15–17 millions of annual births in China, there is a paucity of information on prevalence and outcome of preterm birth. We characterized the outcome of preterm births and hospitalized preterm infants by gestational age (GA) in Huai’an in 2015, an emerging prefectural region of China. Methods Of 59,245 regional total births, clinical data on 2651 preterm births and 1941 hospitalized preterm neonates were extracted from Huai’an Women and Children’s Hospital (HWCH) and non-HWCH hospitals in 2018–2020. Preterm prevalence, morbidity and mortality rates were characterized and compared by hospital categories and GA spectra. Death risks of preterm births and hospitalized preterm infants in the whole region were analyzed with multivariable Poisson regression. Results The prevalence of extreme, very, moderate, late and total preterm of the regional total births were 0.14, 0.53, 0.72, 3.08 and 4.47%, with GA-specific neonatal mortality rates being 44.4, 15.8, 3.7, 1.5 and 4.3%, respectively. There were 1025 (52.8% of whole region) preterm admissions in HWCH, with significantly lower in-hospital death rate of inborn (33 of 802, 4.1%) than out-born (23 of 223, 10.3%) infants. Compared to non-HWCH, three-fold more neonates in HWCH were under critical care with higher death rate, including most extremely preterm infants. Significantly all-death risks were found for the total preterm births in birth weight <  1000 g, GA < 32 weeks, amniotic fluid contamination, Apgar-5 min < 7, and birth defects. For the hospitalized preterm infants, significantly in-hospital death risks were found in out-born of HWCH, GA < 32 weeks, birth weight <  1000 g, Apgar-5 min < 7, birth defects, respiratory distress syndrome, necrotizing enterocolitis and ventilation, whereas born in HWCH, antenatal glucocorticoids, cesarean delivery and surfactant use decreased the death risks. Conclusions The integrated data revealed the prevalence, GA-specific morbidity and mortality rate of total preterm births and their hospitalization, demonstrating the efficiency of leading referral center and whole regional perinatal-neonatal network in China. The concept and protocol should be validated in further studies for prevention of preterm birth.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 892
Author(s):  
Marcelo Epstein

The constitutive characterization of the uniformity and homogeneity of binary elastic composites is presented in terms of a combination of the material groupoids of the individual constituents. The incorporation of these two groupoids within a single double groupoid is proposed as a viable mathematical framework for a unified formulation of this and similar kinds of problems in continuum mechanics.


Sign in / Sign up

Export Citation Format

Share Document