Storage of whole blood: effect of temperature on the measured concentration of analytes in serum.

1988 ◽  
Vol 34 (10) ◽  
pp. 2111-2114 ◽  
Author(s):  
N N Rehak ◽  
B T Chiang

Abstract We measured the concentrations of 29 commonly measured analytes in fresh sera and in sera that had been stored as whole blood at seven different temperatures for 24 h. We determined the effect of storage temperature and prolonged contact with cell clot on the measured concentration of each analyte, with fresh serum as the control. Significant differences were observed for concentrations of creatinine, glucose, inorganic phosphorus, potassium, and both aminotransferases. The extent of these differences was temperature dependent. Values for the remaining 23 analytes examined were essentially unaffected by the storage.

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1034
Author(s):  
Radosław Lisiecki ◽  
Bogusław Macalik ◽  
Robert Kowalski ◽  
Jarosław Komar ◽  
Witold Ryba-Romanowski

Crystals of LiNbO3 single-doped with Sm3+, Tb3+, or Dy3+ and crystal of LiTaO3 single-doped with Tb3+ were grown by the Czochralski method. Luminescence spectra and decay curves for LiNbO3 samples containing Sm3+ or Dy3+ ions were recorded at different temperatures between 295 and 775 K, whereas those for samples containing Tb3+ ions were recorded at different temperatures between 10 and 300 K. Optical absorption spectra at different temperatures were recorded within the UV-blue region relevant to optical pumping of the samples. It was found that the effect of temperature on experimental luminescence lifetimes consists of the initial temperature-independent stage followed by a steep decrease with the onset at about 700, 600, and 150 K for Sm3+, Dy3+, and Tb3+ ions, respectively. Additionally, comparison of temperature impact on luminescence properties of LiNbO3:Tb3+ and LiTaO3:Tb3+ crystals has been adequately described. Experimental results were interpreted in terms of temperature-dependent charge transfer (CT) transitions within the modified Temperature—Dependent Charge Transfer phenomenological model (TDCT). Disparity of the onset temperatures and their sequence were explained based on the location of familiar zigzag curves connecting the ground state levels of rare earth ions with respect to the band-gap of the host. It was concluded also that LiNbO3:Sm3+ is suitable as an optical sensor within the 500–750 K temperature region whereas LiNbO3:Dy3+ offers the highest sensitivity at lower temperatures between 300 and 400 K.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050022
Author(s):  
Niandong Xu ◽  
Weiguo Li ◽  
Jianzuo Ma ◽  
Yong Deng ◽  
Haibo Kou ◽  
...  

In this study, a theoretical model is developed to characterize the quantitative effect of temperature on the hardness of pure FCC and HCP metals. The model is verified by comparison with the available experimental results of Cu, Al, Zn, Mg, Be, Zr, Ni, Ir, Rh, and Ti at different temperatures. Compared with the widely quoted Westbrook model and Ito–Shishokin model which need piecewise fitting to describe experimental values, the present model merely needs two hardness values at different temperatures to predict the experimental results, reducing reliance on conducting lots of experiments. This work provides a convenient method to predict temperature-dependent hardness of pure metals, and it is worth noting that it can be applied to a wide temperature range from absolute zero to melting point.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 768 ◽  
Author(s):  
Wenbo Luo ◽  
Ming Li ◽  
Youjian Huang ◽  
Boyuan Yin ◽  
Xiaoling Hu

The mechanical behaviour of carbon-black (CB)-filled rubber is temperature-dependent. It is assumed that temperature affects the fatigue life of rubber products by changing the tear energy of the material. The static tearing behaviour and fatigue crack propagation behavior of CB-filled rubber at different temperatures were investigated in this study. The critical tear energy of the material was measured through static tear fracture tests at different temperatures; it is shown that the critical tear energy decreases exponentially with increasing temperature. A fatigue crack growth test of a constrained precracked planar tension specimen was conducted at room temperature; the measurements verify that the fatigue crack growth follows a Paris–Erdogan power law. Considering the temperature dependence of the critical tear energy, the temperature dependent fatigue crack growth kinetics of CB-filled rubber was established, and the fatigue life of the material at high temperatures was predicted based on the kinetics. The predictions are in good agreement with experimental measurements.


2022 ◽  
Vol 1048 ◽  
pp. 182-188
Author(s):  
Mayank Chakraverty ◽  
V.N. Ramakrishnan

This paper demonstrates the transport of electron and hole carriers in two distinct hydrogenated amorphous semiconductor materials at different temperatures. Compared to crystalline materials, the amorphous semiconductors differ structurally, optically and electrically, hence the nature of carrier transport through such amorphous materials differ. Materials like hydrogenated amorphous silicon and amorphous IGZO have been used for the study of temperature dependent carrier transport in this paper. Simulation results have been presented to show the variation of free electron and hole concentration, trapped electron and hole concentration with energy at 300K for both the materials. The change in mobility with a change in the Fermi level has been plotted for different temperatures. The effect of temperature on Brownian motion mobility of electrons and holes in hydrogenated amorphous silicon and amorphous IGZO has been demonstrated towards the end of this paper.


2014 ◽  
Vol 17 (3) ◽  
pp. 479-485 ◽  
Author(s):  
J. Szczawiński ◽  
M. E. Szczawińska ◽  
A. Łobacz ◽  
A. Jackowska-Tracz

Abstract The aim of the study was to determine the inactivation rates of Salmonella Enteritidis in commercially produced yogurt and to generate primary and secondary mathematical models to predict the behaviour of these bacteria during storage at different temperatures. The samples were inoculated with the mixture of three S. Enteritidis strains and stored at 5oC, 10oC, 15oC, 20oC and 25oC for 24 h. The number of salmonellae was determined every two hours. It was found that the number of bacteria decreased linearly with storage time in all samples. Storage temperature and pH of yogurt significantly influenced survival rate of S. Enteritidis (p < 0.05). In samples kept at 5oC the number of salmonellae decreased at the lowest rate, whereas at 25°C the reduction in number of bacteria was the most dynamic. The natural logarithm of mean inactivation rates of Salmonella calculated from primary model was fitted to two secondary models: linear and polynomial. Equations obtained from both secondary models can be applied as a tool for prediction of inactivation rate of Salmonella in yogurt stored under temperature range from 5 to 25°C; however, polynomial model gave the better fit to the experimental data.


2013 ◽  
Vol 73 (2) ◽  
pp. 239-243 ◽  
Author(s):  
MC Mejia-Torres ◽  
A Sáenz

The entomopathogenic nematode Heterorhabditis sp. SL0708 (Rhabditida: Heterorhabditidae) isolated from soil in Alcalá, Valle del Cauca (Colombia) was characterised ecologically using Galleria mellonella larvae (L) (Pyralidae: Galleriinae) as hosts. The effect of temperature on the viability, infectivity and reproduction, and of moisture on infectivity and storage in liquid were evaluated in infective juveniles (IJs). Significant differences were found in the viability, infectivity and reproduction of the IJs at different temperatures. No nematodes were recovered at 5 °C and 10 °C, and at 35 °C no infectivity was observed. Average daily nematode recovery was best at 25 °C, and survival of the IJs was low in substrates presenting 13% moisture. The optimal storage temperature for Heterorhabditis sp. SL0708 was between 20 °C and 30 °C, keeping its infectivity for up to 8 weeks.


2017 ◽  
Vol 27 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Diego Batlla ◽  
Andrés Mateo Agostinelli

AbstractFor seed banks showing seasonal changes in their dormancy level, the possibility of predicting temporal patterns of emergence depends on establishing a robust relationship between temperature and the rate of dormancy loss and induction. However, although the effect of temperature on dormancy loss has been extensively studied, less work has been advocated to the quantification of temperature effects on dormancy induction. In the present work, we quantified temperature regulation of dormancy induction inPolygonum aviculareseeds using the hydrotime model. To study induction into secondary dormancy, seeds previously released from primary dormancy through stratification at 5°C were stored at dormancy-inductive temperatures of 10, 15, 20 and 25°C for different periods. During storage, seeds were germinated at different temperatures and water potentials, and hydrotime model parameters were derived. Changes in hydrotime model parameters (mean base water potential for germination and its standard deviation, and the hydrotime required for germination) during dormancy induction were described by adjusting exponential equations. Obtained results indicated a minimum temperature for dormancy induction of 8.7°C and the existence of a bi-linear relationship between rate of induction into secondary dormancy and storage temperature, in which storage temperatures around 25°C showed a higher dormancy induction rate than those below 20°C. Developed model equations were then used to predict changes in germination behaviour during dormancy induction at different temperatures, showing a good agreement between simulated and observed values.


2000 ◽  
Vol 48 (4) ◽  
pp. 369 ◽  
Author(s):  
David T. Booth

Incubation temperature influences embryonic development and the morphology of resultant hatchlings in many species of turtle but few studies have addressed its effect on oxygen consumption and total embryonic energy expenditure. Eggs of the Australian broad-shelled river turtle, Chelodina expansa, were incubated at constant temperatures of 24˚C and 28˚C to determine the effect of temperature on oxygen consumption, embryonic energy expenditure and hatchling morphology. All embryos at both incubation temperatures experienced a period of developmental diapause immediately after oviposition. Once this initial diapause was broken, embryos underwent a further period of developmental arrest when the embryo was still very small and had minimal oxygen consumption (<20 µL h–1). However, once rapid embryonic growth started, development appeared to be continuous. Rate of increase and peak rate of oxygen consumption were temperature dependent, both being highest at 28˚C. Net production efficiency (total oxygen consumed during incubation divided by yolk-free hatchling mass) was 120 mL O2 g–1 at 24˚C and 111 mL O2g–1 at 28˚C. Hatchling mass and yolk-free hatchling mass were independent of incubation temperature, but hatchlings from 28˚C had larger residual yolks and smaller head widths than hatchlings from 24˚C.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 975
Author(s):  
Theeyathart Homsombat ◽  
Sukolrat Boonyayatra ◽  
Nattakarn Awaiwanont ◽  
Duangporn Pichpol

Staphylococcal food poisoning (SFP), caused by the contamination of staphylococcal enterotoxins, is a common foodborne disease worldwide. The aims of this study were: (1) to investigate classical staphylococcal enterotoxin genes, sea, seb, sec, sed, and see, among Staphylococcus aureus and coagulase-negative staphylococci (CNS) associated with bovine mastitis; (2) to determine the effect of temperature on the expression of classical staphylococcal enterotoxin genes in staphylococci in milk. The detection of classical staphylococcal enterotoxin genes was performed using S. aureus (n = 51) and CNS (n = 47). The expression of classical enterotoxin genes, including sea, seb, sec, and see, was determined during the growth of staphylococci in milk subjected to ultra-high-temperature processing at two different temperatures: 8 °C and room temperature. Classical staphylococcal enterotoxin genes were expressed more frequently in S. aureus (35.30%) than in CNS (12.77%). The sec gene was most frequently detected in S. aureus (29.41%) and CNS (6.38%). Moreover, the expression of sea and sec was significantly higher at room temperature than at 8 °C after 16 h of incubation (p < 0.05). These results emphasize the importance of maintaining the storage temperature of milk below 8 °C to reduce the risk of SFP.


Sign in / Sign up

Export Citation Format

Share Document