scholarly journals The Tortuous Road to the Adoption of katal for the Expression of Catalytic Activity by the General Conference on Weights and Measures

2002 ◽  
Vol 48 (3) ◽  
pp. 586-590 ◽  
Author(s):  
René Dybkær

Abstract Background: The “unit” for “enzymic activity” (U = 1 μmol/min) was recommended by the International Union of Biochemistry and Molecular Biology (IUB) in 1961 and is widely used in medical laboratory reports. The general trend in metrology, however, is toward global standardization through defining units coherent with the International System of Units (SI). Approach: Several proposals were advanced from the IFCC, International Union of Pure and Applied Chemistry, and IUB regarding the definition for enzymic activity as well as the terms for kind-of-quantity, units, symbol, and dimension. In 1977, international agreement was reached between these bodies and WHO that “catalytic activity” (z), of a catalyst in a given system is defined by the rate of conversion in a measuring system (in mol/s) and expressed in “katal” (symbol, kat; equal to 1 mol/s). The katal is invariant of the measurement procedure, but the numerical quantity value is not. Gaining support for the katal from the final arbiter, the General Conference on Weights and Measures, was slow, but Resolution 12 of 1999 adopted the katal (symbol, kat) as a special name and symbol for the SI-derived unit, mol/s, used in measuring catalytic activity. Conclusions: Laboratory results for amounts of catalysts, including enzymes, measured by their catalytic activity can now officially be expressed in katals and are traceable to the SI provided that the specified indicator reaction reflects first-order kinetics. The conversion from “unit” is: 1 U = 16.667 × 10−9 kat. Further derived quantities have coherent units such as kat/L, kat/kg, and kat/kat = 1.

2020 ◽  
pp. 26-32
Author(s):  
M. I. Kalinin ◽  
L. K. Isaev ◽  
F. V. Bulygin

The situation that has developed in the International System of Units (SI) as a result of adopting the recommendation of the International Committee of Weights and Measures (CIPM) in 1980, which proposed to consider plane and solid angles as dimensionless derived quantities, is analyzed. It is shown that the basis for such a solution was a misunderstanding of the mathematical formula relating the arc length of a circle with its radius and corresponding central angle, as well as of the expansions of trigonometric functions in series. From the analysis presented in the article, it follows that a plane angle does not depend on any of the SI quantities and should be assigned to the base quantities, and its unit, the radian, should be added to the base SI units. A solid angle, in this case, turns out to be a derived quantity of a plane angle. Its unit, the steradian, is a coherent derived unit equal to the square radian.


Author(s):  
Ian M. Mills ◽  
Peter J. Mohr ◽  
Terry J. Quinn ◽  
Barry N. Taylor ◽  
Edwin R. Williams

We review the proposal of the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM), currently being considered by the General Conference on Weights and Measures (Conférences Générales des Poids et Mesures, CGPM), to revise the International System of Units (Le Système International d'Unitès, SI). The proposal includes new definitions for four of the seven base units of the SI, and a new form of words to present the definitions of all the units. The objective of the proposed changes is to adopt definitions referenced to constants of nature, taken in the widest sense, so that the definitions may be based on what are believed to be true invariants. In particular, whereas in the current SI the kilogram, ampere, kelvin and mole are linked to exact numerical values of the mass of the international prototype of the kilogram, the magnetic constant (permeability of vacuum), the triple-point temperature of water and the molar mass of carbon-12, respectively, in the new SI these units are linked to exact numerical values of the Planck constant, the elementary charge, the Boltzmann constant and the Avogadro constant, respectively. The new wording used expresses the definitions in a simple and unambiguous manner without the need for the distinction between base and derived units. The importance of relations among the fundamental constants to the definitions, and the importance of establishing a mise en pratique for the realization of each definition, are also discussed.


2018 ◽  
Vol 90 (1) ◽  
pp. 175-180 ◽  
Author(s):  
Roberto Marquardt ◽  
Juris Meija ◽  
Zoltán Mester ◽  
Marcy Towns ◽  
Ron Weir ◽  
...  

AbstractIn 2011 the General Conference on Weights and Measures (CGPM) noted the intention of the International Committee for Weights and Measures (CIPM) to revise the entire International System of Units (SI) by linking all seven base units to seven fundamental physical constants. Of particular interest to chemists, new definitions for the kilogram and the mole have been proposed. A recent IUPAC Technical Report discussed these new definitions in relation to immediate consequences for the chemical community. This IUPAC Recommendation on the preferred definition of the mole follows from this Technical Report. It supports a definition of the mole based on a specified number of elementary entities, in contrast to the present 1971 definition.


2014 ◽  
Vol 613 ◽  
pp. 17-25 ◽  
Author(s):  
Arnold Nicolaus ◽  
Rudolf Meeß ◽  
Guido Bartl

The General Conference on Weights and Measures (CGPM) discusses the improvements of a possible revision of the International System of Units (SI). For the new definition of the kilogram apart from an artifact of Platinum-Iridium a suitable fundamental constant seems to be found, to which the kg could be related. Although the Planck constant, h, is being considered for the new definition, its value can currently be determined with less uncertainty from the value of the Avogadro constant, NA. As well the determination of the Avogadro constant is suitable as a primary method for the subsequent realization of the kilogram. The international Avogadro group has reached so far a relative measurement uncertainty of 3×10-8, mainly limited by the interferometric measurement of the volume of the 28Si-spheres, used to count the atoms. The dominant influence on the measurement uncertainty is a contribution which subsumes wavefront aberrations due to surface deviations and irregularities of the spheres polished from our partner at CSIRO, Australia. A new multi-step machining process, developed and realized at PTB, reduces considerably the surface contamination and creates spheres with surface properties which exceed the standards in matters of form deviation and surface roughness. The manufacturing process incorporates highly reproducible multi-step grinding and polishing steps. The surfaces are almost free of scratches and show average roughness values below 0.3 nm. The form shows some regular, long wavelength errors below 30 nm in amplitude, collocated conform to crystal orientation.


2018 ◽  
Vol 40 (2) ◽  
pp. 31-31

Abstract The theme for World Metrology Day 2018 is Constant evolution of the International System of Units. This theme was chosen because in November 2018, the General Conference on Weights and Measures is expected to agree one of the largest changes to the International System of Units (the SI) since its inception. The proposed changes are based on the results of research into new measurement methods that have used quantum phenomena as the basis for standards that are fundamental.  The SI will be based on a set of definitions each linked to the laws of physics and have the advantage of being able to embrace further improvements in measurement science and technology to meet the needs of future users for many years to come.


2019 ◽  
Vol 41 (2) ◽  
pp. 53-54
Author(s):  
Daniel Rabinovich

Abstract The International Prototype Kilogram, after 130 years of dutiful service, is finally retiring. The IPK, a golf ball-sized cylinder made of a special platinum-iridium alloy (90:10), was introduced in 1889 at the first General Conference on Weights and Measures (CGPM) near Paris to define the unit of mass using an artifact fabricated with the utmost care and precision available at the time. New units were subsequently adopted for other physical quantities such as electric current (the ampere) and temperature (the kelvin), and the increasing need for a more cohesive set of units of measurement led to the implementation of the International System of Units (SI) in 1960.


Author(s):  
Aldo Clerico ◽  
Andrea Ripoli ◽  
Gian Carlo Zucchelli ◽  
Mario Plebani

AbstractThe lack of interchangeable laboratory results and consensus in current practices has underpinned greater attention to standardization and harmonization projects. In the area of method standardization and harmonization, there is considerable debate about how best to achieve comparability of measurement for immunoassays, and in particular heterogeneous proteins. The term standardization should be used only when comparable results among measurement procedures are based on calibration traceability to the International System of Units (SI unit) using a reference measurement procedure (RMP). Recently, it has been promoted the harmonization of methods for many immunoassays, and in particular for thyreotropin (TSH), as accepted RMPs are not available. In a recent paper published in this journal, a group of well-recognized authors used a complex statistical approach in order to reduce variability between the results observed with the 14 TSH immunoassay methods tested in their study. Here we provide data demonstrating that data from an external quality assessment (EQA) study allow similar results to those obtained using the reported statistical approach.


ACTA IMEKO ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 3 ◽  
Author(s):  
Roman Schwartz ◽  
Michael Borys

At its 24<sup>th</sup> meeting in October 2011 the General Conference on Weights and Measures (CGPM) adopted a Resolution on the possible future revision of the International System of Units (SI). This paper provides an overview of the proposed changes to the SI, the focus being on the proposed redefinition of the kilogram and possible consequences for mass metrology.<br />


2021 ◽  
Vol 34 (1) ◽  
pp. 12-16
Author(s):  
Teodor Ognean

At the 26th meeting of the General Conference on Weights and Measures (CGPM) held on 13‐16 November 2018 at Versailles, France, the new International System of Units (SI) was established. Following the CGPM’s decision, the new SI units were established based upon a set of seven defining constants. This set of constants is the most fundamental feature in the definition of the entire system of units. What is truly remarkable about the new SI is the fact that all measurement units, except the amount of substance mole and Avogadro’s number NA , are defined based on the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">Δ</mml:mi> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">Cs</mml:mi> </mml:mrow> </mml:msub> </mml:math> equal to 9 192 631 770 Hz. This article, based on dimensional analysis, presents the possibility of connecting the Avogadro’s number NA and the mole, to the transition frequency <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mo>Δν</mml:mo> </mml:mrow> <mml:mrow> <mml:mtext>Cs</mml:mtext> </mml:mrow> </mml:msub> </mml:math> .


Author(s):  
Barry N. Taylor

A revised International System of Units (SI) is expected to be established by the 26th General Conference on Weights and Measures when it convenes in November 2018 and to be put into practice starting on 20 May 2019, World Metrology Day. In consequence, the article published in this journal in 2011, “The Current SI Seen from the Perspective of the Proposed New SI,” is updated in this paper, which provides an opportunity to again demonstrate the usefulness of the quantity calculus in dealing with quantities and units. The quantity calculus and the seven defining constants of the current and revised SI are reviewed, and expressions for the seven current and revised SI base units are given. Relationships between the magnitudes of revised and current SI units and expressions for the numerical values of current SI defining constants expressed in revised SI units are also obtained using the quantity calculus.


Sign in / Sign up

Export Citation Format

Share Document