Ensemble Technique for Toxicity Prediction of Small Drug Molecules of the Antioxidant Response Element Signalling Pathway

2020 ◽  
Author(s):  
Vishan Kumar Gupta ◽  
Prashant Singh Rana

Abstract The in-silico toxicity prediction techniques are useful to reduce rodents testing (in-vivo). Authors have proposed a computational method (in silico) for the toxicity prediction of small drug molecules using their various physicochemical properties (molecular descriptors), which can bind to the antioxidant response elements (AREs). The software PaDEL-Descriptor is used for extracting the different features of drug molecules. The ARE data set has total 7439 drug molecules, of which 1147 are active and 6292 are inactive, and each drug molecule contains 1444 features. We have proposed a novel ensemble-based model that can efficiently classify active (binding) and inactive (non-binding) compounds of the data set. Initially, we performed feature selection using random forest importance algorithm in R, and subsequently, we have resolved the class imbalance issue by ensemble learning method itself, where we divided the data set into five data frames, which have an almost equal number of active and inactive drug molecules. An ensemble model based upon the votes of four base classifiers is proposed, which gives an accuracy of 97.14%. The K-fold cross-validation is conducted to measure the consistency of the proposed ensemble model. Finally, the proposed ensemble model is validated on some new drug molecules and compared with some existing models.

2019 ◽  
Vol 17 (05) ◽  
pp. 1950033 ◽  
Author(s):  
Vishan Kumar Gupta ◽  
Prashant Singh Rana

In this study, efforts are created to develop a quantitative structure–activity relationship (QSAR)-based model, which are used for the prediction of toxicities to reduce testing in animals, time, and money in the early stages of drug development. An efficient machine learning model is developed to predict the toxicity of those drug molecules which binds to the androgen receptor (AR). Toxicity prediction is performed in terms of their activity, activity score, potency, and efficacy by using various physicochemical properties. A multilevel ensemble model is proposed, where its first level is performed ensemble-based classification of activity, and the second level is performed ensemble-based regression of activity score, potency, and efficacy of only those drug molecules which have been found active during the classification level. The AR dataset has 10,273 drug molecules where 461 are active, and 9812 are inactive, and each drug molecule has 1444 features. Therefore, our dataset is highly imbalanced having a very large number of features. Initially, we performed feature selection then the class imbalance problem is resolved. The [Formula: see text]-fold cross-validation is accomplished to measure the consistency of the model. Finally, our proposed multilevel ensemble model has been validated and compared with some existing models.


Author(s):  
Abdelkader A Metwally ◽  
Amira A Nayel ◽  
Rania M Hathout

In silico prediction of the in vivo efficacy of siRNA ionizable-lipid nanoparticles is desirable yet never achieved before. This study aims to computationally predict siRNA nanoparticles in vivo efficacy, which saves time and resources. A data set containing 120 entries was prepared by combining molecular descriptors of the ionizable lipids together with two nanoparticles formulation characteristics. Input descriptor combinations were selected by an evolutionary algorithm. Artificial neural networks, support vector machines and partial least squares regression were used for QSAR modeling. Depending on how the data set is split, two training sets and two external validation sets were prepared. Training and validation sets contained 90 and 30 entries respectively. The results showed the successful predictions of validation set log(dose) with R2val = 0.86 – 0.89 and 0.75 – 80 for validation sets one and two respectively. Artificial neural networks resulted in the best R2val for both validation sets. For predictions that have high bias, improvement of R2val from 0.47 to 0.96 was achieved by selecting the training set lipids lying within the applicability domain. In conclusion, in vivo performance of siRNA nanoparticles was successfully predicted by combining cheminformatics with machine learning techniques.


2019 ◽  
Vol 25 (31) ◽  
pp. 3292-3305 ◽  
Author(s):  
Harekrishna Roy ◽  
Sisir Nandi

Background: Drug metabolism is a complex mechanism of human body systems to detoxify foreign particles, chemicals, and drugs through bio alterations. It involves many biochemical reactions carried out by invivo enzyme systems present in the liver, kidney, intestine, lungs, and plasma. After drug administration, it crosses several biological membranes to reach into the target site for binding and produces the therapeutic response. After that, it may undergo detoxification and excretion to get rid of the biological systems. Most of the drugs and its metabolites are excreted through kidney via urination. Some drugs and their metabolites enter into intestinal mucosa and excrete through feces. Few of the drugs enter into hepatic circulation where they go into the intestinal tract. The drug leaves the liver via the bile duct and is excreted through feces. Therefore, the study of total methodology of drug biotransformation and interactions with various targets is costly. Methods: To minimize time and cost, in-silico algorithms have been utilized for lead-like drug discovery. Insilico modeling is the process where a computer model with a suitable algorithm is developed to perform a controlled experiment. It involves the combination of both in-vivo and in-vitro experimentation with virtual trials, eliminating the non-significant variables from a large number of variable parameters. Whereas, the major challenge for the experimenter is the selection and validation of the preferred model, as well as precise simulation in real physiological status. Results: The present review discussed the application of in-silico models to predict absorption, distribution, metabolism, and excretion (ADME) properties of drug molecules and also access the net rate of metabolism of a compound. Conclusion: : It helps with the identification of enzyme isoforms; which are likely to metabolize a compound, as well as the concentration dependence of metabolism and the identification of expected metabolites. In terms of drug-drug interactions (DDIs), models have been described for the inhibition of metabolism of one compound by another, and for the compound–dependent induction of drug-metabolizing enzymes.


2021 ◽  
Author(s):  
Vadim Alexandrov ◽  
Alexander Kirpich ◽  
Yuriy Gankin

Abstract In this work a novel computational multi-reference poly-conformational algorithm is presented for design, optimization, and repositioning of pharmaceutical compounds. The algorithm searches for candidates by comparing similarities between conformers of the same compound and identifies target compounds whose conformers are simultaneously “close” to the conformers for each of the compounds in a reference set. The reference compounds can have very different MoAs, which directly and simultaneously shapes the properties of the target candidate compounds. The algorithm functionality has been validated in silico by scoring ChEMBL drugs against FDA-approved reference compounds which either had the highest predicted binding affinity to our chosen SARS-COV-2 targets or confirmed to be inhibiting such targets in-vivo. All our top scoring ChEMBL compounds also turned out to be either high-affinity ligands to the chosen targets (as confirmed separately in other studies) or showing significant efficacy in-vivo against those selected targets.In addition to method validation in silico search for new compounds within two virtual libraries from the Enamine database is presented. The library’s virtual compounds have been compared to the same set of reference drugs that we used for validation: Olaparib, Tadalafil, Ergotamine and Remdesivir. The large reference set of four potential SARS-CoV-2 compounds have been selected, since no drug has been identified to be 100% effective against the virus so far, possibly because each candidate drug was targeting only one particular MoA. The goal here was to introduce methodology for identifying potential candidate(s) that cover multiple MoA-s presented within a set of reference compounds.


2020 ◽  
Vol 17 (2) ◽  
pp. 154-165
Author(s):  
Vaishali M. Patil ◽  
Preeti Anand ◽  
Monika Bhardwaj ◽  
Neeraj Masand

Background: In the past decade CADD has emerged as a rational approach in drug development so with the help molecular docking approach we planned to perform virtual screening of the designed data set of Schiff bases of cinnamaldehyde. The research work will be helpful to put some light on the drug receptor interactions required for anti-inflammatory activity. Methods: For carrying out virtual screening of the developed cinnamaldehyde Schiff base data set, AutoDock 4.0 was used. The active hits identified through in silico screening were synthesized. Anti-inflammatory evaluation was carried out using Carrageenan-induced paw oedema method. Results: Compounds V2A44, V2A55, V2A76, V2A82, V2A119, V2A141 and V2A142 has shown highest binding energy (-4.84, -4.76, -4.59, -4.78, -4.74, -4.85 and -4.72 kcal/mol, respectively) and the binding interactions with amino acids namely, Phe478, Glu479, Lys492, Ala493, Asp497 and Ile498. Some of the analogs have shown significant activity and were comparable to Indomethacin (standard drug). Conclusion: Five new compounds have shown significant activity and the results obtained from in silico studies are parallel to those of in vivo studies.


Author(s):  
Onat Kadioglu ◽  
Sabine M. Klauck ◽  
Edmond Fleischer ◽  
Letian Shan ◽  
Thomas Efferth

AbstractThe majority of drug candidates fails the approval phase due to unwanted toxicities and side effects. Establishment of an effective toxicity prediction platform is of utmost importance, to increase the efficiency of the drug discovery process. For this purpose, we developed a toxicity prediction platform with machine-learning strategies. Cardiotoxicity prediction was performed by establishing a model with five parameters (arrhythmia, cardiac failure, heart block, hypertension, myocardial infarction) and additional toxicity predictions such as hepatotoxicity, reproductive toxicity, mutagenicity, and tumorigenicity are performed by using Data Warrior and Pro-Tox-II software. As a case study, we selected artemisinin derivatives to evaluate the platform and to provide a list of safe artemisinin derivatives. Artemisinin from Artemisia annua was described first as an anti-malarial compound and later its anticancer properties were discovered. Here, random forest feature selection algorithm was used for the establishment of cardiotoxicity models. High AUC scores above 0.830 were achieved for all five cardiotoxicity indications. Using a chemical library of 374 artemisinin derivatives as a case study, 7 compounds (deoxydihydro-artemisinin, 3-hydroxy-deoxy-dihydroartemisinin, 3-desoxy-dihydroartemisinin, dihydroartemisinin-furano acetate-d3, deoxyartemisinin, artemisinin G, artemisinin B) passed the toxicity filtering process for hepatotoxicity, mutagenicity, tumorigenicity, and reproductive toxicity in addition to cardiotoxicity. Experimental validation with the cardiomyocyte cell line AC16 supported the findings from the in silico cardiotoxicity model predictions. Transcriptomic profiling of AC16 cells upon artemisinin B treatment revealed a similar gene expression profile as that of the control compound, dexrazoxane. In vivo experiments with a Zebrafish model further substantiated the in silico and in vitro data, as only slight cardiotoxicity in picomolar range was observed. In conclusion, our machine-learning approach combined with in vitro and in vivo experimentation represents a suitable method to predict cardiotoxicity of drug candidates.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
B Ovalle-Magallanes ◽  
A Madariaga-Mazón ◽  
A Navarrete ◽  
R Mata

2020 ◽  
Author(s):  
Johannes Karges ◽  
Shi Kuang ◽  
Federica Maschietto ◽  
Olivier Blacque ◽  
Ilaria Ciofini ◽  
...  

<div>The use of photodynamic therapy (PDT) against cancer has received increasing attention overthe recent years. However, the application of the currently approved photosensitizers (PSs) is somehow limited by their poor aqueous solubility, aggregation, photobleaching and slow clearance from the body. To overcome these limitations, there is a need for the development of new classes of PSs with ruthenium(II) polypyridine complexes currently gaining momentum. However, these compounds generally lack significant absorption in the biological spectral window, limiting their application to treat deep-seated or large tumors. To overcome this drawback, ruthenium(II) polypyridine complexes designed in silico with (E,E’)-4,4´-bisstyryl 2,2´-bipyridine ligands showed impressive 1- and 2-Photon absorption up to a magnitude higher than the ones published so far. While non-toxic in the dark, these compounds were found phototoxic in various 2D monolayer cells, 3D multicellular tumor spheroids and be able to eradicate a multiresistant tumor inside a mouse model upon clinically relevant 1-Photon and 2 Photon excitation.</div>


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


Sign in / Sign up

Export Citation Format

Share Document