A High-Speed Link Layer Architecture for Low Latency and Memory Cost Reduction

2007 ◽  
Vol 50 (5) ◽  
pp. 616-628
Author(s):  
J. Lee ◽  
H.-J. Lee ◽  
C. Lee
2021 ◽  
Author(s):  
Shiva Raj Pokhrel ◽  
Neeraj Kumar ◽  
Anwar Walid

Connected Autonomous Vehicles (CAVs) are Not-So-Futuristic. CAVs will be highly dynamic by intelligently exploiting multipath communication over several radio technologies, such as high-speed WiFi and 5G and beyond networks. Yet, the likelihood of data communication loss can be very high and/, or packets arrive at the destination not in correct working order due to erratic and mixed time-varying wireless links. Furthermore, the vehicular data traffic is susceptible to loss and delay variation,which recommends the need to investigate new multipath TCP(MPTCP) protocols for ultra-reliable low latency communication(URLLC) over such heterogeneous networks while reassuring CAVs’ needs. We undertake the challenge by jointly considering network coding and balanced linked adaptation for performing coupled congestion control across multiple wireless paths.Consequently, the proposed low delay MPTCP framework for connecting autonomous vehicles is efficient and intelligent by design. We conduct a rigorous convergence analysis of the MPTCP design framework. In summation, we provide a detailed mathematical study and demonstrate that the latency penalty for the URLLC-MPTCP developed over these networks becomes negligible when considering the possible benefits that multiple network convergence could offer. Our extensive emulation results demonstrate all these lucrative features of URLLC-MPTCP.


Author(s):  
Anatoliy Soltus ◽  
◽  
Maksym Rud ◽  

The article examines the problems of navigation and communication with the use of satellite technologies in road transport in the context of the growth of globalization processes in the world economy and the transformations of freight transport technologies caused by a large-scale transition to transport with zero emissions and the development of unmanned vehicles. The paper discusses the principles of building a global high-speed broadband satellite Internet with low latency. Potential capabilities of technologies such as digital antenna arrays and laser communication channels used in such systems are analyzed. Also considered are the existing and potential problems, both technical with electromagnetic compatibility with existing satellite communication systems and between systems under construction or planning, and legal caused by changes in the principles of information transfer at the interstate level. The main players in the emerging market of high-speed satellite communications are considered and the parameters of the systems declared by them are described. The comparison of the current state of building satellite constellations of individual projects is carried out and the ability to implement the announced plans by individual companies is analyzed. The disadvantages that create obstacles for the introduction of high-speed satellite communications in road transport at the moment and the directions of their overcoming are highlighted. Considering the potential of satellite Internet systems, the current state of construction, as well as existing technical and legal restrictions, the introduction of reliable satellite communications will significantly speed up the transition to autonomous unmanned vehicles. In this regard, the most successful opportunities for the new communication technology will be able to realize the transport companies, which will simultaneously update the fleet of vehicles towards zero emissions and with unmanned technologies.


Author(s):  
David R. Selviah ◽  
Janti Shawash

This chapter celebrates 50 years of first and higher order neural network (HONN) implementations in terms of the physical layout and structure of electronic hardware, which offers high speed, low latency, compact, low cost, low power, mass produced systems. Low latency is essential for practical applications in real time control for which software implementations running on CPUs are too slow. The literature review chapter traces the chronological development of electronic neural networks (ENN) discussing selected papers in detail from analog electronic hardware, through probabilistic RAM, generalizing RAM, custom silicon Very Large Scale Integrated (VLSI) circuit, Neuromorphic chips, pulse stream interconnected neurons to Application Specific Integrated circuits (ASICs) and Zero Instruction Set Chips (ZISCs). Reconfigurable Field Programmable Gate Arrays (FPGAs) are given particular attention as the most recent generation incorporate Digital Signal Processing (DSP) units to provide full System on Chip (SoC) capability offering the possibility of real-time, on-line and on-chip learning.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yuyang Zhang ◽  
Tao Zheng ◽  
Ping Dong ◽  
Hongbin Luo ◽  
Zhibo Pang

Greater demands are being placed on the access bandwidth, stability, and delay of network because of the quickening rhythm of life and work, especially in mobile scenario. In order to obtain a stable network with low latency and high bandwidth in mobile scenario, taking advantage of the wireless heterogeneous network in parallel is a good choice. Nowadays, people are increasingly concerned about the network quality under the mobile scenario. Some scholars have done the relevant measurements. However, all of those measurements mainly investigate part of the network parameters or part of mobile scenarios. In this paper, we make the following contributions. Firstly, in high-speed mobile scenario, the wireless network qualities of different vendors are measured synthetically. Secondly, we analyze the benefits of taking advantage of the different vendors. Thirdly, we deploy the replication link mechanism in high-speed mobile scenario and propose an algorithm to remove the duplicate packet in high-speed mobile scenario. And the algorithm can also be used in another multipath schedule algorithm to improve the reliability.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2157
Author(s):  
Yousef Almadani ◽  
David Plets ◽  
Sander Bastiaens ◽  
Wout Joseph ◽  
Muhammad Ijaz ◽  
...  

Visible Light Communication (VLC) is a short-range optical wireless communication technology that has been gaining attention due to its potential to offload heavy data traffic from the congested radio wireless spectrum. At the same time, wireless communications are becoming crucial to smart manufacturing within the scope of Industry 4.0. Industry 4.0 is a developing trend of high-speed data exchange in automation for manufacturing technologies and is referred to as the fourth industrial revolution. This trend requires fast, reliable, low-latency, and cost-effective data transmissions with fast synchronizations to ensure smooth operations for various processes. VLC is capable of providing reliable, low-latency, and secure connections that do not penetrate walls and is immune to electromagnetic interference. As such, this paper aims to show the potential of VLC for industrial wireless applications by examining the latest research work in VLC systems. This work also highlights and classifies challenges that might arise with the applicability of VLC and visible light positioning (VLP) systems in these settings. Given the previous work performed in these areas, and the major ongoing experimental projects looking into the use of VLC systems for industrial applications, the use of VLC and VLP systems for industrial applications shows promising potential.


Sign in / Sign up

Export Citation Format

Share Document